Massive Sulfide Ores in the Iberian Pyrite Belt: Mineralogical and Textural Evolution
Abstract
:1. Introduction
2. Geological Context
3. Samples and Methods
4. Orebody Morphology and Relationship with Hosting Rocks
5. Ore Mineralogy and Textures
5.1. Magnetite Mineralization
5.2. Barite Mineralization
5.3. Pyrite Mineralization
5.4. Polymetallic Mineralization
5.5. Cupriferous Mineralization
5.6. Polymetallic Mineralization with As–Sb
6. Evolution of Mineralizations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lydon, J.W. Ore deposit models, 14, volcanogenic massive sulphide deposits Part 2: Genetic models. Geosci. Can. 1988, 15, 43–65. [Google Scholar]
- Large, R.R. Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models. Econ. Geol. 1992, 87, 471–510. [Google Scholar] [CrossRef]
- Ohmoto, H. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geol. Rev. 1996, 10, 135–177. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Galley, A.G.; Jonasson, I.R. Volcanogenic massive sulfide deposits. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Economic Geology: New Haven, CT, USA, 2005; pp. 523–560. [Google Scholar]
- Tornos, F.; Peter, J.M.; Allen, F.; Conde, C. Controls on the siting and style of volcanogenic massive sulphide deposits. Ore Geol. Rev. 2015, 68, 142–163. [Google Scholar] [CrossRef]
- Eldridge, C.S.; Barton, P.B.; Ohmoto, H. Mineral textures and their bearing on formation of the Kuroko orebodies. In Economic Geology, Monograph 5; Ohmoto, H., Skinner, B.J., Eds.; Economic Geology: New Haven, CT, USA, 1983; pp. 241–281. [Google Scholar]
- Gibson, H.L.; Allen, R.L.; Riverin, G.; Lane, T.E. The VMS model: Advances and application to exploration targeting. In Proceedings of the Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; Available online: http://www.dmec.ca/ex07-dvd/E07/pdfs/49.pdf (accessed on 22 October 2019).
- Pinedo Vara, I. Piritas de Huelva. Su Historia, Minería y Aprovechamiento; Summa: Madrid, Spain, 1963; p. 1003. [Google Scholar]
- Nocete, F.; Álex, E.; Nieto, J.M.; Sáez, R.; Bayona, M.R. An archaeological approach to regional environmental pollution in the South-Western Iberian Peninsula related to Third Millennium BC mining and metallurgy. J. Archaeol. Sci. 2005, 32, 1566–1576. [Google Scholar] [CrossRef]
- Sáez, R.; Almodóvar, G.R.; Pascual, E. Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol. Rev. 1996, 11, 429–452. [Google Scholar] [CrossRef]
- Sáez, R.; Pascual, E.; Toscano, M.; Almodóvar, G.R. The Iberian type of volcano-sedimentary massive sulphide deposits. Miner. Depos. 1999, 34, 549–570. [Google Scholar] [CrossRef]
- Leistel, J.M.; Marcoux, E.; Thiéblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt, Review and preface to the Thematic Issue. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Martin-Izard, A.; Arias, D.M.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañón, C.; Lavandeira, A.; Sánchez, J. A new 3D geological model and interpretation of structural evolution of the world-class Rio Tinto VMS deposit, Iberian Pyrite Belt (Spain). Ore Geol. Rev. 2015, 71, 457–476. [Google Scholar] [CrossRef] [Green Version]
- Relvas, J.M.R.S.; Tassinari, C.C.G.; Munhá, J.; Barriga, F.J.A.S. Multiple sources for ore-forming fluids in the Neves Corvo VHMS deposit of the Iberian Pyrite Belt (Portugal): Strontium, neodymium and lead isotope evidence. Miner. Depos. 2001, 36, 416–427. [Google Scholar] [CrossRef]
- Schermerhorn, L.J.G. An outline stratigraphy of the Iberian Pyrite Belt. Bolet. Geol. Min. 1971, 82, 239–268. [Google Scholar]
- Barriga, F.J.A.S. Metallogenesis in the Iberian Pyrite Belt. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez-García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 369–379. [Google Scholar]
- Almodóvar, G.R.; Sáez, R.; Toscano, M.; Pascual, E. Co-Ni and “inmobile” element behaviour in ancient hydrothermal systems, Aznalcóllar, Iberian Pyrite Belt, Spain. In Mineral Deposits: From Their Origin to Their Environmental Impacts; Pašava, J., Kríbek, R., Zák, K., Eds.; Balkema: Roterdam, The Netherlands, 1995; pp. 217–220. [Google Scholar]
- Almodóvar, G.R.; Sáez, R.; Pons, J.M.; Maestre, A.; Toscano, M.; Pascual, E. Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Miner. Depos. 1998, 33, 111–136. [Google Scholar] [CrossRef]
- Almodóvar, G.R.; Sáez, R. Los sulfuros masivos de la Faja Pirítica Ibérica. In Geología de España; Vera, J.A., Ed.; Sociedad Geológica de España—Instituto Geológico y Minero de España: Madrid, Spain, 2004; pp. 207–209. [Google Scholar]
- Tornos, F.; Solomon, M.; Conde, C.; Spiro, B.F. Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: Geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ. Geol. 2008, 103, 185–214. [Google Scholar] [CrossRef]
- Velasco, F.; Sánchez-España, J.; Boyce, A.J.; Fallick, A.E.; Sáez, R.; Almodóvar, G.R. A new sulphur isotopic study of some Iberian Pyrite Belt deposits: Evidence of a textural control on sulphur isotope composition. Miner. Depos. 1998, 34, 4–18. [Google Scholar] [CrossRef]
- Inverno, C.M.; Solomon, M.; Barton, M.D.; Foden, J. The Cu stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: A mineralogical, fluid inclusion, and isotopic investigation. Econ. Geol. 2008, 103, 241–267. [Google Scholar] [CrossRef]
- Sáez, R.; Moreno, C.; González, F. Synchronous deposition of massive sulphide deposits in the Iberian Pyrite Belt: New data from Las Herrerías and La Torerera ore-bodies. Comptes Rendus Geosci. 2008, 340, 829–839. [Google Scholar] [CrossRef]
- Martin-Izard, A.; Arias, D.M.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañón, C.; Sánchez, J. Ore deposit types and tectonic evolution of the Iberian Pyrite Belt: From transtensional basins and magmatism to transpression and inversion tectonics. Ore Geol. Rev. 2016, 79, 254–267. [Google Scholar] [CrossRef]
- Castroviejo, R.; Quesada, C.; Soler, M. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance. Miner. Depos. 2011, 46, 615–637. [Google Scholar] [CrossRef]
- Yesares, L.; Sáez, R.; Nieto, J.M.; Almodóvar, G.R.; Gómez, C.; Escobar, J.M. The Las Cruces deposit, Iberian Pyrite Belt, Spain. Ore Geol. Rev. 2015, 66, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Moreno, C.; Sierra, S.; Saéz, R. Evidence for catastrophism at the Famennian–Dinantian boundary in the Iberian Pyrite Belt. In Recent Advances in Lower Carboniferous Geology; Strogen, P., Sommerville, I.D., Jones, J.L., Eds.; The Geological Society: London, UK, 1996; pp. 153–162. [Google Scholar]
- Barriga, F.J.A.S. Hydrothermal Metamorphism and Ore Genesis at Aljustrel, Portugal. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 1983; p. 386, Unpublished. [Google Scholar]
- Barriga, F.J.A.S.; Fyfe, W.S. Giant pyritic base-metal deposits: The example of Feitais (Aljustrel, Portugal). Chem. Geol. 1988, 69, 331–343. [Google Scholar] [CrossRef]
- Marcoux, E. Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Miner. Depos. 1998, 33, 45–58. [Google Scholar] [CrossRef]
- Sáez, R.; Moreno, C.; González, F.; Almodóvar, G.R. Black shale and massive sulfide deposits: Causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Miner. Depos. 2011, 46, 585–614. [Google Scholar] [CrossRef]
- Tornos, F.; Heinrich, C.A. Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits. Chem. Geol. 2008, 247, 195–207. [Google Scholar] [CrossRef]
- Marignac, C.; Diagana, B.; Cathelineau, M.; Boiron, M.C.; Banks, D.; Fourcade, S.; Vallance, J. Remobilisation of base metals and gold by Variscan metamorphic fluids in the south Iberian Pyrite Belt: Evidence from the Tharsis VMS deposit. Chem. Geol. 2003, 194, 143–165. [Google Scholar] [CrossRef]
- De Miguel, J.M.G. Mineralogía, paragénesis y sucesión de los sulfuros masivos en la Faja Pirítica en el suroeste de la Península Ibérica. Bol. Geol. Min. 1990, 101, 73–105. [Google Scholar]
- Marcoux, E.; Moelo, Y.; Leistel, J.M. Compared ore mineralogy and geochemistry of the massive sulfide and stringer ore deposits of the Southern Spain. Miner. Depos. 1996, 31, 1–26. [Google Scholar]
- Gaspar, O.C. Mineralogy and sulfide mineral chemistry of the Neves–Corvo ores, Portugal: Insight into their genesis. Can. Mineral. 2002, 40, 611–636. [Google Scholar] [CrossRef]
- Oliveira, D.P.S.; Matos, J.X.M.; Rosa, C.J.P.; Rosa, D.R.N.; Figueiredo, M.O.; Silva, T.P.; Guimarães, F.; Carvalho, J.R.S.; Pinto, Á.M.M.; Relvas, J.R.M.S.; et al. The Lagoa Salgada Orebody, Iberian Pyrite Belt. Econ. Geol. 2011, 106, 1111–1128. [Google Scholar] [CrossRef]
- Saéz, R. La Faja Pirítica Ibérica. Una Perspectiva Geológica, Arqueológica y Ambiental. Ph.D. Thesis, University of Huelva, Huelva, Spain, 2010. Unpublished. [Google Scholar]
- González, F.; Moreno, C.; Sáez, R.; Clayton, G. Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): A palynological approach. J. Geol. Soc. 2002, 159, 229–232. [Google Scholar] [CrossRef]
- Barrie, C.T.; Amelin, Y.; Pascual, E. U–Pb geochronology of VMS mineralization in the Iberian Pyrite Belt. Miner. Depos. 2002, 37, 684–703. [Google Scholar] [CrossRef]
- Silva, J.B.; Oliveira, J.T.; Ribeiro, A. South Portuguese zone. Structural outline. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., García, E.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 348–362. ISBN 13:978-3-642-83982-5. [Google Scholar]
- Pereira, Z.; Sáez, R.; Pons, J.M.; Oliveira, J.T.; Moreno, C. Edad devónica (Struniense) de las mineralizaciones de Aznalcóllar (Faja Pirítica Ibérica) en base a palinología. Geogaceta 1996, 20, 1609–1612. [Google Scholar]
- Simancas, J.F. Geología de la Extremidad Oriental de la Zona Surportuguesa. Ph.D. Thesis, University of Granada, Granada, Spain, 1983. Unpublished. [Google Scholar]
- Simancas, J.F.; Carbonell, R.; Lodeiro, F.G.; Estaún, A.P.; Juhlin, C.; Ayarza, P.; Kashubin, A.; Azor, A.; Poyatos, D.M.; Almodóvar, G.R.; et al. The crustal structure of the transpressional Variscan orogen of SW Iberia: The IBERSEIS deep seismic reflection profile. Tectonics 2003, 22, 1063–1078. [Google Scholar] [CrossRef]
- Almodóvar, G.R.; Sáez, R.; Toscano, M.; Moreno, C.; Donaire, T.; Nieto, J.M.; González, F.; Yesares, M.D.; Pascual, E. Hidrotermalismo de hace más de 350 millones de años: La Faja Pirítica Ibérica. Rev. Enseñanza Cienc. Tierra 2012, 20, 210–213. [Google Scholar]
- Relvas, J.M.R.S.; Barriga, F.J.A.S.; Ferreira, A.; Noiva, P.C.; Pacheco, N.; Barriga, G. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, mineralogy, and geochemistry. Econ. Geol. 2006, 101, 753–790. [Google Scholar] [CrossRef]
- Leistel, J.M.; Marcoux, E.; Deschamps, I. Chert in the Iberian Pyrite Belt. Miner. Depos. 1998, 33, 59–81. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulphides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Boulter, C.A. Río Tinto-Guaymas comparisons: Super-giant mineralization in an ancient sill-sediment complex. Geology 1994, 21, 801–804. [Google Scholar] [CrossRef]
- Strauss, G.K.; Madel, J. Geology of massive sulphide deposits in the Spanish Portuguese Pyrite Belt. Geol. Rundsch. 1974, 63, 191–211. [Google Scholar] [CrossRef]
- Strauss, G.K. Sobre la Geología de la Provincia Piritífera del Suroeste de la Península Ibérica y de sus Yacimientos, en Especial Sobre la Mina de Pirita de Lousal; Instituto Geológico y Minero de España: Madrid, Spain, 1971; p. 266. (In Spanish) [Google Scholar]
- Barnes, H.L. Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Fournier, R.O. The behavior of silica in hydrothermal solutions. In Geology and Geochemistry of Epithermal Systems; Berger, B.R., Bethke, P.M., Eds.; The Society of Economic Geologists: Littleton, CO, USA, 1986; pp. 45–62. [Google Scholar]
- Brown, K. Thermodynamics and kinetics of silica scaling. In Proceedings of the International Workshop on Mineral Scaling, Manila, Philippines, 25–27 May 2011. [Google Scholar]
- Crerar, D.A.; Barnes, H.L. Ore solution chemistry V. Solubilities of chalcopyrite assemblages in hydrothermal solution at 200 to 350 °C. Econ. Geol. 1976, 71, 772–794. [Google Scholar] [CrossRef]
- Seward, T.M.; Williams-Jones, A.E.; Migdisov, A.A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Amsterdam, The Netherland, 2014; Volume 13. [Google Scholar]
- Seewald, J.S.; Seyfried, W.E. The effect of temperature on metal mobility in subseafloor hydrothermal systems: Constraints from basalt alteration experiments. Earth Planet. Sci. Lett. 1990, 101, 388–403. [Google Scholar] [CrossRef]
- Xiao, Z.; Gammons, C.H.; Williams-Jones, A.E. Experimental study of copper (I) chloride complexing in hydrothermal solutions at 40 to 300 °C and saturated water vapour pressure. Geochim. Cosmochim. Acta 1998, 62, 2949–2964. [Google Scholar] [CrossRef]
- Solomon, M.; Walshe, J.L. The formation of massive sulfide deposits on the sea floor. Econ. Geol. 1979, 74, 797–813. [Google Scholar] [CrossRef]
- German, K.; Volker, L.; Banks, D.A.; Simon, K.; Hoefs, J. Late Hercynian polymetallic vein-type base-metal mineralization in the Iberian Pyrite Belt: Fluid-inclusion and stable-isotope geochemistry (S–O–H–Cl). Miner. Depos. 2003, 38, 953–967. [Google Scholar] [CrossRef]
- Fleet, M.E. Structural transitions in natural ZnS. Am. Mineral. 1977, 62, 540–546. [Google Scholar]
- Akizuki, M. Investigation of phase transition of natural ZnS minerals by high resolution electron microscopy. Am. Mineral. 1981, 66, 1006–1012. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almodóvar, G.R.; Yesares, L.; Sáez, R.; Toscano, M.; González, F.; Pons, J.M. Massive Sulfide Ores in the Iberian Pyrite Belt: Mineralogical and Textural Evolution. Minerals 2019, 9, 653. https://doi.org/10.3390/min9110653
Almodóvar GR, Yesares L, Sáez R, Toscano M, González F, Pons JM. Massive Sulfide Ores in the Iberian Pyrite Belt: Mineralogical and Textural Evolution. Minerals. 2019; 9(11):653. https://doi.org/10.3390/min9110653
Chicago/Turabian StyleAlmodóvar, Gabriel R., Lola Yesares, Reinaldo Sáez, Manuel Toscano, Felipe González, and Juan Manuel Pons. 2019. "Massive Sulfide Ores in the Iberian Pyrite Belt: Mineralogical and Textural Evolution" Minerals 9, no. 11: 653. https://doi.org/10.3390/min9110653
APA StyleAlmodóvar, G. R., Yesares, L., Sáez, R., Toscano, M., González, F., & Pons, J. M. (2019). Massive Sulfide Ores in the Iberian Pyrite Belt: Mineralogical and Textural Evolution. Minerals, 9(11), 653. https://doi.org/10.3390/min9110653