Petrogenesis, Ore Mineralogy, and Fluid Inclusion Studies of the Tagu Sn–W Deposit, Myeik, Southern Myanmar
Abstract
:1. Introduction
2. Geologic Setting
2.1. Regional Geological Setting
2.2. Geology of Deposit
2.3. Petrography of Granitoids and Greywacke
3. Results
3.1. Geochemical Characteristics of Granitic Rocks
3.1.1. Analytical Techniques
3.1.2. Major Oxide Elements
3.1.3. Trace Elements
3.2. Mineralization of Tagu Sn–W Deposit
3.3. Mineralogy and Paragenesis
3.4. Fluid Inclusion Studies
3.4.1. Method
3.4.2. Fluid Inclusion Petrography
3.4.3. Results of Microthermometric Measurements
4. Discussions
4.1. Petrogenesis of Granitic Rocks
4.2. Tectonic Setting
4.3. Mechanism of Ore Formation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaw, K. Chapter 24 Overview of mineralization styles and tectonic–metallogenic setting in Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 531–556. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Robb, L.J.; Searle, M.P. The metallogenic provinces of Myanmar. Appl. Earth Sci. 2014, 123, 25–38. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Robb, L.J.; Morley, C.K.; Searle, M.P.; Cawood, P.A.; Whitehouse, M.J.; Kirkland, C.L.; Roberts, N.M.; Myint, T.A. The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system. Ore Geol. Rev. 2016, 79, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Myint, A.Z.; Yonezu, K.; Boyce, A.J.; Selby, D.; Scherstén, A.; Tindell, T.; Watanabe, K.; Swe, Y.M. Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: Implications for timing of mineralization and ore genesis. Ore Geol. Rev. 2018, 95, 663–679. [Google Scholar] [CrossRef] [Green Version]
- Zaw, K. Geological, petrological and geochemical characteristics of granitoid rocks in Burma; with special reference to the associated W-Sn mineralization and their tectonic setting. J. Southeast Asian Earth Sci. 1990, 4, 293–335. [Google Scholar] [CrossRef]
- Cobbing, E.J.; Pitfield, P.E.J.; Darbyshire, D.P.F.; Mallick, D.I.J. The granites of the South-East Asian tin belt. Overseas Memoir 10. Br. Geol. Surv. 1992, 10, 369. [Google Scholar]
- Cobbing, E.J.; Mallick, D.I.J.; Pitfield, P.E.J.; Teoh, L.H. The granites of the Southeast Asian tin belt. J. Geol. Soc. 1986, 143, 537–550. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Chung, S.L.; Thura, O.; Lin, T.H.; Hung, C.H. Zircon U-Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a Neo-Tethys ocean? J. Asian Earth Sci. 2012, 56, 1–23. [Google Scholar] [CrossRef]
- Bender, F. Geology of Burma; Gebruder Borntraeger: Berlin/Stuttgart, Germany, 1983; p. 293. [Google Scholar]
- Myint, A.Z.; Suzaki, R.; Yonezu, K.; Watanabe, K.; Ya, K.Z. Geology of Dawei Sn-W District, Myanmar. In Proceedings of the International Symposium Earth Science and Technology, Fukuoka, Japan, 4–5 December 2014; pp. 244–246. [Google Scholar]
- Htun, T.; Htay, T.; Zaw, K. Tin–tungsten deposits of Myanmar. Geol. Soc. Lond. Mem. 2017, 48, 625–647. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Htay, M.T.; Htun, K.M.; Win, M.N.; Oo, T.; Hlaing, T. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. J. Asian Earth Sci. 2007, 29, 891–910. [Google Scholar] [CrossRef]
- Sone, M.; Metcalfe, I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. C. R. Geosci. 2008, 340, 166–179. [Google Scholar] [CrossRef]
- Myint, A.Z. Granite-Related Sn-W-REE Mineralization in Mawchi and Dawei Areas, Myanmar. Ph.D. Thesis, Kyushu University, Fukuoka, Japan, 2015. [Google Scholar]
- Chhibber, H.L. Geology of Burma; Macmillan and, Co.: London, UK, 1934. [Google Scholar]
- Hutchison, C.S.; Taylor, D. Metallogenesis in SE Asia. J. Geol. Soc. Lond. 1978, 135, 407–428. [Google Scholar] [CrossRef]
- Hobson, G.V. The development of themineral deposit at Mawchi as determined by geology and genesis. Trans. Min. Geol. Metall. Inst. India 1940, 36, 35–78. [Google Scholar]
- Mitchell, A.H.G.; Ausa, C.A.; Deiparine, L.; Hlaing, T.; Htay, N.; Khine, A. The Modi Taung–Nankwe gold district, Slate belt, central Myanmar: Mesothermal veins in a Mesozoic orogen. J. Asian Earth Sci. 2004, 23, 321–341. [Google Scholar] [CrossRef]
- Myint, A.Z.; Watanabe, K.; Yonezu, K. Relationship between granitoid types and tin mineralization: A review of Tertiary granitoids in central granitoid belt. Myanmar. In Proceedings of the International Conference Georesources and Geological Engineering, Yogyakarta, Indonesia, 11–12 December 2013; pp. 13–21. [Google Scholar]
- Myint, A.Z.; Zaw, K.; Swe, Y.M.; Yonezu, K.; Cai, Y.; Manaka, T.; Watanabe, K. Geochemistry and geochronology of granites hosting the Mawchi Sn–W deposit, Myanmar: Implications for tectonic setting and granite emplacement. Geol. Soc. Lond. Mem. 2017, 48, 385–400. [Google Scholar] [CrossRef]
- Hobson, G.V. A geological survey in parts of Karenni and the Southern Shan States. Geol. Surv. India Mem. 1941, 74, 103–105. [Google Scholar]
- Coggin Brown, J.; Heron, A. The Geology and Ore Deposits of the Tavoy District. Geol. Sur. India 1923, 44, 167–354. [Google Scholar]
- Rao, S.R. Geology of the Mergui District. Mem. Geol. Sur. India 1930, 55, 273–313. [Google Scholar]
- Li, H.; Myint, A.Z.; Yonezu, K.; Watanabe, K.; Algeo, T.J.; Wu, J.H. Geochemistry and U–Pb geochronology of the Wagone and Hermyingyi A type granites, southern Myanmar: Implications for tectonic setting, magma evolution and Sn–W mineralization. Ore Geol. Rev. 2018, 95, 575–592. [Google Scholar] [CrossRef]
- Myint, A.Z.; Yonezu, K.; Watanabe, K. Sn-W mineralization in central granitoid belt of Myanmar. In Proceedings of the Oral Presentation at the Annual Meeting of Resource Geology Society, Tokyo, Japan, 22–24 June 2016. [Google Scholar]
- Imai, N.; Terashima, S.; Itoh, S.; Ando, A. 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “Igneous rock series”. Geostand. Newsl. 1995, 19, 135–213. [Google Scholar]
- Middlemost, E.A.K. Naming Materials in the Magma/ Igneous Rock System. Earth Sci. Rev. 1994, 37, 215–244. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Shand, S.J. The Eruptive Rocks, 2nd ed.; John Wiley: New York, NY, USA, 1943; p. 444. [Google Scholar]
- Irvine, T.N.J.; Baragar, W.R.A. A guide chemical classification of the common volcanic rock. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- El Bouseily, A.M.; El Sokkary, A.A. The Relation between Rb, Ba and Sr in Granitic Rocks. Chem. Geol. 1975, 16, 207–219. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Bozzo, A.T.; Chen, H.-S.; Kass, J.R.; Barduhn, A.J. The properties of the hydrates of chlorine and carbon dioxide. Desalination 1975, 16, 303–320. [Google Scholar] [CrossRef]
- Collins, P.L.F. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol. 1979, 74, 1435–1444. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Miner. 1984, 12, 644. [Google Scholar]
- Zou, Z.; Zhang, J.R.; Hu, R.Z. Geology, fluid inclusions, and isotopic geochemistry of the Jinman sediment-hosted copper deposit in the Lanping Basin, China. Resour. Geol. 2017, 67, 384–398. [Google Scholar] [CrossRef]
- Yang, X.M.; Drayson, D.; Polat, A. S-type granites in the western Superior Province: A marker of Archean collision zones. Can. J. Earth Sci. 2018, 1–28. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Champion, D.C.; Bultitude, R.J. The geochemical and Sr–Nd isotopic characteristics of Paleozoic fractionated S-types granites of north Queensland: Implications for S-type granite petrogenesis. Lithos 2013, 162–163, 37–56. [Google Scholar] [CrossRef]
- Cullers, R.L.; Graf, J.L. Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks-Ore Petrogenesis. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 275–316. [Google Scholar]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Spec. Publ. Geol. Soc. Lond. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Myint, A.Z.; Yonezu, K.; Watanabe, K. Sn-W Mineralization in Dawei region, Southern Myanmar. In Proceedings of the 7th Asia Africa Mineral Resources Conference, Yangon, Myanmar, 20–21 November 2017; pp. 115–117. [Google Scholar]
- Gardiner, N.J.; Searle, M.P.; Robb, L.J.; Morley, C.K. Neo-Tethyan magmatism and metallogeny in Myanmar—An Andean analogue? J. Asian Earth Sci. 2015, 106, 197–215. [Google Scholar] [CrossRef]
- Chen, X.C.; Hu, R.Z.; Bi, X.W.; Zhong, H.; Lan, J.B.; Zhao, C.H.; Zhu, J.J. Petrogenesis of metaluminous A-type granitoids in the Tengchong–Lianghe tin belt of southwestern China: Evidence from zircon U–Pb ages and Hf–O isotopes, and whole rock Sr–Nd isotopes. Lithos 2015, 212, 93–110. [Google Scholar] [CrossRef]
- Jiang, H.; Li, W.Q.; Jiang, S.Y.; Wang, H.; Wei, X.P. Geochronological, geochemical and Sr Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos 2017, 268, 32–47. [Google Scholar] [CrossRef]
- Chen, X.C.; Zhao, C.H.; Zhu, J.J.; Wang, X.S.; Cui, T. He, Ar, and S isotopic constraints on the relationship between A-type granites and tin mineralization: A case study of tin deposits in the Tengchong-Lianghe tin belt, southwest China. Ore Geol. Rev. 2018, 92, 416–429. [Google Scholar] [CrossRef]
- Mlynarczyk, M.S.; Williams-Jones, A.E. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth Planet. Sci. Lett. 2005, 240, 656–667. [Google Scholar] [CrossRef]
- itchell, A.H.G.; Htay, M.T.; Htun, K.M. The Medial Myanmar Suture Zone and the Western Myanmar–Mogok foreland. J. Myanmar Geosci. Soc. 2015, 6, 73–88. [Google Scholar]
- Ridd, M.F. Should Sibumasu be renamed Sibuma? The case for a discrete Gondwana-derived block embracing western Myanmar, upper Peninsular Thailand and NE Sumatra. J. Geol. Soc. Lond. 2016, 173, 249–264. [Google Scholar] [CrossRef]
- Christiansen, E.H.; Keith, J.D. Trace element systematics in silicic magmas: A metallogenic perspective. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Short Coures Notes; Wyman, D.A., Ed.; Geological Association of Canada: St. John’s, NL, Canada, 1996; Volume 12, pp. 115–151. [Google Scholar]
- Schwartz, M.O.; Rajah, S.S.; Askury, A.K.; Putthapiban, P.; Djaswadi, S. The Southeast Asian tin belt. Earth Sci. Rev. 1995, 38, 95–293. [Google Scholar] [CrossRef]
- Zaw, U.K. Geology and geothermometry of vein-type W-Sn deposits at Pennaichaung and Yetkanzintaung Prospects, Tavoy Township, Tennasserim Division, Southern Burma. Min. Depos. 1984, 19, 138–144. [Google Scholar] [CrossRef]
- Zaw, K. Fluid inclusion studies on the Hermyingyi W-Sn deposit, southern Burma. In Proceedings of the 3rd Regional Conference Geology Mineral Resources Southeast Asia, Bangkok, Thailand, 14 November 1978; pp. 393–397. [Google Scholar]
- Zaw, U.K.; Thet, D.K.M. A note on a fluid inclusion study of tin-tungsten mineralization at Mawchi Mine, Kayah State, Burma. Econ. Geol. 1983, 78, 530–534. [Google Scholar]
- Wang, X.D.; Ni, P.; Yuan, S.D.; Wu, S.H. Fluid inclusion studies of the Huangsha quartz–vein type tungsten deposit, Jiangxi Province. Acta Petrol. Sin. 2012, 28, 122–132. [Google Scholar]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
Sample No. | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 |
---|---|---|---|---|---|---|---|---|---|---|
Major oxide elements (wt%) | ||||||||||
SiO2 | 71.53 | 73.56 | 71.65 | 71.79 | 72.34 | 71.15 | 71.15 | 69.48 | 71.68 | 75.98 |
TiO2 | 0.31 | 0.38 | 0.32 | 0.36 | 0.30 | 0.27 | 0.31 | 0.31 | 0.36 | 0.30 |
Al2O3 | 13.67 | 13.68 | 14.95 | 14.72 | 14.45 | 15.06 | 15.09 | 15.88 | 14.36 | 12.83 |
FeO | 2.08 | 2.27 | 2.07 | 2.08 | 2.06 | 1.82 | 1.88 | 1.58 | 2.18 | 1.68 |
MnO | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.06 | 0.02 | 0.04 | 0.06 |
MgO | 0.71 | 0.79 | 0.77 | 0.78 | 0.67 | 0.61 | 0.65 | 0.64 | 0.72 | 0.57 |
CaO | 1.23 | 1.25 | 1.11 | 1.00 | 1.05 | 1.04 | 1.16 | 0.71 | 1.18 | 0.61 |
Na2O | 1.62 | 2.19 | 2.28 | 2.07 | 2.50 | 2.39 | 2.37 | 2.30 | 2.24 | 1.89 |
K2O | 6.70 | 4.61 | 5.01 | 5.02 | 4.46 | 5.92 | 5.49 | 7.37 | 5.59 | 4.62 |
P2O5 | 0.16 | 0.20 | 0.18 | 0.17 | 0.17 | 0.14 | 0.15 | 0.18 | 0.17 | 0.15 |
LOI | 1.74 | 0.86 | 1.42 | 1.78 | 1.51 | 1.35 | 1.51 | 1.30 | 1.27 | 1.09 |
Total | 99.79 | 99.83 | 99.80 | 99.81 | 99.54 | 99.79 | 99.81 | 99.78 | 99.78 | 99.77 |
Trace elements (ppm) | ||||||||||
Sc | 1.3 | 0.8 | 1.0 | 2.2 | 1.7 | 2.1 | 2.1 | 1.8 | 1.7 | 1.9 |
V | 31 | 36 | 24 | 25 | 28 | 17 | 25 | 27 | 31 | 21 |
Co | 45 | 30 | 40 | 46 | 38 | 30 | 38 | 41 | 29 | 26 |
Ni | 15 | 15 | 11 | 12 | 15 | 13 | 16 | 15 | 14 | 13 |
Cu | 23 | n.d | 6 | 64 | 34 | 14 | 11 | 3 | 4 | 97 |
Zn | 91 | 12 | 203 | 154 | 81 | 74 | n.d | 23 | 153 | 61 |
Pb | 44 | 24 | 34 | 65 | 31 | 57 | 52 | 98 | 70 | 109 |
As | 1 | 9 | 7 | n.d | 7 | n.d | n.d | n.d | 95 | 148 |
Mo | 12 | 16 | 18 | 15 | 13 | 11 | 11 | 14 | 18 | 15 |
Rb | 911 | 633 | 634 | 621 | 680 | 801 | 846 | 757 | 727 | 835 |
Sr | 32 | 31 | 35 | 36 | 26 | 40 | 46 | 66 | 49 | 25 |
Ba | 349 | 202 | 250 | 264 | 159 | 257 | 318 | 437 | 320 | 234 |
Y | 31 | 30 | 29 | 29 | 28 | 33 | 33 | 31 | 31 | 35 |
Zr | 188 | 204 | 197 | 200 | 154 | 158 | 181 | 192 | 210 | 217 |
Nb | 28 | 32 | 27 | 29 | 32 | 27 | 36 | 23 | 29 | 27 |
Th | 56 | 61 | 58 | 58 | 47 | 44 | 46 | 49 | 58 | 53 |
U | 15 | 38 | 44 | 21 | 31 | 19 | 22 | 21 | 13 | 15 |
Sb | 18 | 20 | 14 | 24 | 19 | 18 | 15 | 16 | 21 | 15 |
Sn | 114 | 57 | 50 | 56 | 63 | 53 | 72 | 49 | 59 | 152 |
W | 36 | 32 | 51 | 60 | 48 | 35 | 349 | 8 | 23 | 35 |
Rare earth elements (ppm) | ||||||||||
La | 17.4 | 25.7 | 15.7 | 23.2 | 20.7 | 19.0 | 17.4 | 12.4 | 26.2 | 23.3 |
Ce | 36.7 | 80.7 | 34.6 | 76.1 | 46.7 | 39.4 | 38.4 | 27.6 | 82.3 | 73.6 |
Pr | 4.1 | 6.3 | 3.9 | 5.8 | 5.1 | 4.6 | 4.1 | 3.0 | 6.4 | 5.6 |
Nd | 14.7 | 22.3 | 14.2 | 20.9 | 18.2 | 16.5 | 15.2 | 11.1 | 23.3 | 20.1 |
Sm | 2.5 | 4.0 | 2.5 | 3.7 | 3.2 | 3.0 | 2.6 | 2.1 | 4.2 | 3.6 |
Eu | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 |
Gd | 1.4 | 2.4 | 1.4 | 2.1 | 1.9 | 1.7 | 1.4 | 1.2 | 2.5 | 2.0 |
Tb | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | n.d | n.d | n.d | 0.1 | 0.1 |
Dy | 0.3 | 0.6 | 0.4 | 0.6 | 0.5 | 0.5 | 0.3 | 0.4 | 0.7 | 0.5 |
Ho | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Er | 0.0 | 0.2 | n.d | 0.1 | 0.1 | 0.1 | n.d | n.d | 0.1 | 0.1 |
Tm | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Yb | 0.2 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 |
Lu | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Total REE | 77.8 | 143.1 | 73.4 | 133.3 | 97.3 | 85.5 | 80.1 | 58.4 | 146.5 | 129.6 |
Mineral | Type | Tm,CO2 (°C) | Tm,clath (°C) | Th,CO2 (°C) | Th (°C) | Tice (°C) | FI (N) | Salinity (wt.% NaCleqv.) |
---|---|---|---|---|---|---|---|---|
Granite hosted quartz | Type-A | 230~370 | −1.7~−7.1 | N = 89 | 2.9~10.6 | |||
Type-B | 310~390 | −4.2~−8.4 | N = 34 | 6.7~12.2 | ||||
Type-C | −59.5~−56.8 | 7.1~9.1 | 28.3~31.1 | 270~405 | N = 61 | 1.8~5.6 | ||
Meta-sedimentary hosted quartz | Type-A | 140~330 | −0.6~−5.8 | N = 113 | 1.1~8.9 | |||
Tm,CO2—final melting temperature of CO2; Tm,clath—final melting temperature of CO2 clathrate; Th,CO2—partial homogenization temperature of CO2 inclusions; Th—total homogenization temperature of inclusions; Tice—final ice melting temperature, FI(N)—fluid inclusion number |
No. | Deposit | Location (N, E) | Deposit Type | Terrane/Fold Belt | Host Rocks/(Ages) | Intrusions/(Ages) | Fluid System | Ore Mineralogy | References |
---|---|---|---|---|---|---|---|---|---|
1. | Mawchi (Sn–W) (mine) | 18°45′, 97°10′ | Vein-type | Mogok–Mandalay– Mergui Metamorphic Belt | Metasediments of MawchiFormation equivalent to Mergui Group | Quartz veins and stockworks in both tourmalinized biotite granite (LA-MC-ICP-MS zircon 42–45 Ma) | H2O–NaCl | Cassiterite, wolframite, scheelite, pyrite, chalcopyrite, arsenopyrite, molybdenite, bismuthinite, sphalerite, galena | [4,11,21] |
2. | Hermyingyi (Sn–W) (mine) | 14°15′, 98°35′ | Vein-type | Southern Mogok– Mandalay–Mergui Metamorphic Belt | Metasedimentary rocks of Mergui Group | Megacrystic biotite granite(U–Pb) SHRI MP Zircon age of 61.7 ± 1.3 Ma; LA-ICP-MS zircon ages of 70.5 ± 0.8 Ma and 68.9 ± 1.8 Ma) | H2O–NaCl | Wolframite, cassiterite, molybdenite, pyrite, sphalerite, chalcopyrite, galena, bismuth, bismuthinite | [11] |
3. | Yadanabon (Sn–W) (mine) | 11°17′05″, 99°17′ | Vein-type, alluvial | Southern Mogok– Mandalay–Mergui Metamorphic Belt | Metasedimentary rocks of Mergui Group | Coarse-grained biotite Granite (U–Pb zircon age of 50.3 ± 0.6 Ma) | No data | Wolframite, cassiterite, molybdenite, bismuth, pyrite, bismuthinite, chalcopyrite | [3,11] |
4 | Tagu (Sn–W) (mine) | 12°14′05″, 98°59′54″ | Vein-type | Southern Mogok– Mandalay–Mergui Metamorphic Belt | Metasedimentary rocks of Mergui Group | Pophyritic biotite granite | H2O–CO2–NaCl | Cassiterite, wolframite, pyrite, chalcopyrite, arsenopyrite,pyrrhotite, molybdenite, sphalerite, native bismuth, galena | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Htun, K.T.; Yonezu, K.; Myint, A.Z.; Tindell, T.; Watanabe, K. Petrogenesis, Ore Mineralogy, and Fluid Inclusion Studies of the Tagu Sn–W Deposit, Myeik, Southern Myanmar. Minerals 2019, 9, 654. https://doi.org/10.3390/min9110654
Htun KT, Yonezu K, Myint AZ, Tindell T, Watanabe K. Petrogenesis, Ore Mineralogy, and Fluid Inclusion Studies of the Tagu Sn–W Deposit, Myeik, Southern Myanmar. Minerals. 2019; 9(11):654. https://doi.org/10.3390/min9110654
Chicago/Turabian StyleHtun, Kyaw Thu, Kotaro Yonezu, Aung Zaw Myint, Thomas Tindell, and Koichiro Watanabe. 2019. "Petrogenesis, Ore Mineralogy, and Fluid Inclusion Studies of the Tagu Sn–W Deposit, Myeik, Southern Myanmar" Minerals 9, no. 11: 654. https://doi.org/10.3390/min9110654
APA StyleHtun, K. T., Yonezu, K., Myint, A. Z., Tindell, T., & Watanabe, K. (2019). Petrogenesis, Ore Mineralogy, and Fluid Inclusion Studies of the Tagu Sn–W Deposit, Myeik, Southern Myanmar. Minerals, 9(11), 654. https://doi.org/10.3390/min9110654