Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit Geology
3.1. Chang’anbu Mo Deposit
3.2. Jidetun Mo Deposit
3.3. Fu’anbu Mo Deposit
3.4. Synthesis
4. S–Pb–H–O Isotopes
4.1. Sample Preparation and Analytical Techniques
4.2. S–Pb Isotope Data
4.2.1. S Isotope Data
4.2.2. Pb Isotope Data
4.3. H–O Isotope Data
5. Geochemistry of the Ore-Hosting Rocks
5.1. Sample Preparation and Analytical Techniques
5.2. Major Element Data
5.3. Trace Element Data
6. Discussion
6.1. Ore-Forming Sources
6.2. Tectonic Setting of Mineralisation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, L.C.; Wu, H.Y.; Wan, B. Ages and Geodynamic Settings of Xilamulun Mo–Cu Metallogenic Belt in th eNorthern Part of the North China Craton. Gondwana Res. 2009, 16, 243–254. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Goldfarb, R.J.; Zhang, J.; Gao, B.F.; Wang, Z.L. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Res. 2014, 25, 1469–1483. [Google Scholar] [CrossRef] [Green Version]
- Shu, Q.H.; Chang, Z.S.; Lai, Y.; Zhou, Y.T.; Sun, Y.; Yan, C. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun district. Econ. Geol. 2016, 8, 1783–1798. [Google Scholar] [CrossRef]
- Sengor, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of Synthesis and the Tectonic Evolution of Asia; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Johnson, M.F.; Wang, C.Y.; Wang, P. Continental Island from the Upper Silurian (Ludfordian Stage) of Inner Mongolia: Implications for Eustasy and Paleogeography. Geology 2001, 29, 955–958. [Google Scholar] [CrossRef]
- Ju, N.; Ren, Y.-S.; Zhang, S.; Bi, Z.-W.; Shi, L.; Zhang, D.; Shang, Q.-Q.; Yang, Q.; Wang, Z.-G.; Gu, Y.-C.; et al. Metallogenic Epoch and Tectonic Setting of Saima Niobium Deposit in Fengcheng, Liaoning Province, NE China. Minerals 2019, 9, 80. [Google Scholar] [CrossRef]
- Ju, N.; Ren, Y.; Zhang, S.; Kou, L.; Zhang, D.; Gu, Y.; Yang, Q.; Wang, H.; Shi, L.; Sun, Q.; et al. The Early Jurassic Chang’anbu porphyry Cu–Mo deposit in Northeastern China: Constraints from zircon U–Pb geochronology and H–O–S–Pb stable isotopes. Geol. J. 2017, 53, 2437–2448. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Zhang, L.C. Re–Os Geochronology of Porphyry Molybdenum Deposit in South Segment of Da Hinggan Mountains, Northeastern China. J. Earth Sci. 2010, 21, 390–401. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.J.; Zeng, Q.T. Zircon U–Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications. J. Asian Earth Sci. 2012, 49, 214–233. [Google Scholar] [CrossRef]
- Liu, W.Z. Study on the Geological Features and Genetic Type of the Fu’anbu Molybdenum Deposit, JiLin Province. Master’s Thesis, Jilin University, Changchun, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Zhang, C.; Li, N.; Yang, Y.F.; Deng, K. Geology of the Mo Deposits in Northeast China. J. Jilin Univ. Earth Sci. Ed. 2012, 42, 1223–1268, (In Chinese with English Abstract). [Google Scholar]
- Khashgerel, B.-E. Geology and Reconnaissance Stable Isotope Study of the Oyu Tolgoi Porphyry Cu-Au System, South Gobi, Mongolia. Econ. Geol. 2006, 101, 503–522. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Zhang, Z.L. Geology Fluid Inclusion and Sulfur Isotope Studies of the Chehugou Porphyry Molybdenum Copper Deposit, Xilamulun Metallogenic Belt, NE China. Resour. Geol. 2011, 61, 241–258. [Google Scholar] [CrossRef]
- Drafting Group of Regional Stratigraphic Scale of Jilin Province. Stratigraphic scale of NE, China: Fascicule of Jilin Province. Geol. Press 1978, 4, 81–151. (In Chinese) [Google Scholar]
- Mao, J.W.; Zhang, Z.C.; Zhang, Z.H. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochim. Cosmochim. Acta 1999, 63, 1815–1818. [Google Scholar]
- Zeng, Q.D.; Liu, J.M.; Zhang, Z.L. Geology and Geochronology of the Xilamulun Molybdenum Metallogenic Belt in Eastern Inner Mongolia, China. Int. J. Earth Sci. 2011, 100, 1791–1809. [Google Scholar] [CrossRef]
- Tang, H.S.; Chen, Y.J.; Santosh, M. REE Geochemistry of Carbonates from the Guanmenshan Formation Liaohe Group, NE Sino-Korean Craton: Implications for Seawater Compositional Change During the Great Oxidation Event. Precambrian Res. 2012, 227, 316–336. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Taylor, R.D.; Song, K.R.; Song, Y.H.; Li, Q.Z.; Goldfarb, R.J. Paleozoic magmatism and porphyry Cu-mineralization in an evolvingtectonic setting in the North Qilian Orogenic Belt, NW China. J. Asian Earth Sci. 2016, 122, 20–40. [Google Scholar] [CrossRef]
- Qiu, K.-F.; Taylor, R.D.; Song, Y.-H.; Yu, H.-C.; Song, K.-R.; Li, N. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China. Gondwana Res. 2016, 35, 40–58. [Google Scholar] [CrossRef]
- Tang, H.S.; Chen, Y.J.; Wu, G. Paleoproterozoic Positive δ13C Excursion in the Northeastern Sinokorean Craton: Evidence of the Lomagundi Event. Gondwana Res. 2011, 19, 471–481. [Google Scholar] [CrossRef]
- Davis, G.A.; Zheng, Y.D.; Wang, Z. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasison Hebei and Liaoning Province, Northern China. Colorado Geol. Soc. Am. Mem. 2001, 191, 171–197. [Google Scholar]
- Wan, B.; Hegner, E.; Zhang, L.C. Rb-Sr Geochronology of Chalcopyrite from the Chehugou Porphyry Mo–Cu Deposit (Northeast China) and Geochemical Constraints on the Origin of Hosting Grantechnology. Econ. Geol. 2009, 104, 351–363. [Google Scholar] [CrossRef]
- Zorin, Y.A.; Zorina, L.; Spiridonov, A.M. Geodynamic Setting of Gold Deposits in Eastern and Central trans-bnikal (Chita Region, Russin). Ore Geol. Rev. 2001, 17, 215–232. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, H.Y.; Zaw, K. Geodynamic settings and Tectonic Model of Skarn Gold Depositsin China: An Overview. Geol. Rev. 2007, 31, 139–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.G.; Xing, S.W.; Zhao, K.Q.; Ma, Y.B. Geochronology and metallogenesis of porphyry Mo deposits in east-central Jilin province, China: Constraints from molybdenite Re–Os isotope systematics. Ore Geol. Rev. 2015, 71, 363–372. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Wu, M.Q.; Geng, J.Z.; Ge, X.K.; Gou, Z.; Taylor, R.D. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am. Mineral. 2019. [Google Scholar] [CrossRef]
- Li, W.B.; Huang, Z.L.; Zhang, G. Sources of the ore metals of the Huize ore field in Yunnan province: Constraints from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrol. Sin. 2006, 22, 2561–2580, (In Chinese with English Abstract). [Google Scholar]
- Yin, A.; Nie, S. A Phanerozoic Palinspastic Reconstruction of China and Its Neighboring Regions; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Yang, X.M. Using the Rittmann Serial Index to define the alkalinity of igneous rocks. Neues Jahrb. Mineral. Abh. 2007, 184, 95–109. [Google Scholar]
- Sun, J.G.; Zhang, Y.; Xing, S.W.; Zhao, K.Q.; Zhang, Z.J.; Bai, L.A.; Ma, Y.B.; Liu, Y.S. Genetic types, ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Petrol. Sin. 2012, 28, 1317–1332, (In Chinese with English Abstract). [Google Scholar]
- Xiao, W.J.; Windley, B.F.; Hao, J. Accre-tionLeadingto Collisionandthe product Solonker Suture, Inner Mongolia, China: Terminationofthe CentralAsian OrogenicBelt. Tectonics 2003, 22, 1069. [Google Scholar] [CrossRef]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Zhang, J.H. Metallogenic epoch and geodynamic significance of porphyry Cu–Mo deposits in the eastern part of Xing-Meng Orogenic Belt. Chin. Sci. Bull. 2007, 52, 2407–2417. (In Chinese) [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- White, W.M. Geochemistry; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 406–409. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Wu, M.Q.; Tian, B.F.; Zhang, D.H.; Xu, G.Z.; Xu, W.X.; Qiu, K.F. Zircon of the No. 782 deposit from the Great Xing’an Range in NE China: Implications for Nb-REE-Zr mineralization during magmatic-hydrothermal evolution. Ore Geol. Rev. 2018, 102, 284–299. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chen, H.Y.; Liu, Y.L. Progress and Records in the Study of Endogenetic Miner-alization During Collisional Orogenesis. Chin. Sci. Bull. 2000, 45, 1–10, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Ulrich, T. Fluid Inclusion Study of the Wunugetu Cu–Mo Deposit, Inner Mongolia, China. Miner. Depos. 2012. [Google Scholar] [CrossRef]
- Li, L.X.; Song, Q.H.; Wang, D.H.; Wang, C.H.; Qu, W.J.; Wang, Z.G.; Bi, S.Y.; Yu, C. Re–Os isotopic dating of molybdenite from the Fu’anbu Molybdenum deposit of Jilin province and discussion on its metallogenesis. Rock Miner. Anal. 2009, 28, 283–287, (In Chinese with English Abstract). [Google Scholar]
- Shao, J.B.; Chen, D.Y.; Pan, Y.D.; Wang, H.T. Re–Os isotopic dating of molybdenites from Jidetun and Shimadong large molybdenum deposits in centro-eastern Jilin and its geological significance. Glob. Geol. 2016, 35, 717–728, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.H.; Song, Q.H.; Wang, D.H.; Li, L.X.; Yu, C.; Wang, Z.G.; Qu, W.J.; Du, A.D.; Ying, L.J. Re–Os isotopic dating of molybdenite from the Daheishan molybdenum deposit of Jilin province and its geological significance. Rock Miner. Anal. 2009, 28, 269–273, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Sun, D.Y. Phanerozoic continental crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- Qiu, K.F.; Marsh, E.; Yu, H.C.; Pfaff, K.; Gulbransen, C.; Gou, Z.Y.; Li, N. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, Western Qinling, NW China. Ore Geol. Rev. 2017, 86, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Qiu, K.F.; Song, K.R.; Song, Y.H. Magmatic-hydrothermal fluid evolution of the Wenquan porphyry molybdenum deposit in the north margin of the Western Qinling, China. Acta Petrol. Sin. 2015, 31, 3391–3404, (In Chinese with English Abstract). [Google Scholar]
- Ren, Y.S.; Ju, N.; Zhao, H.L.; Wang, H.; Hou, K.J.; Liu, S. Geochronology and Geochemistry of Metallogenetic Porphyry Bodies from Nongping Au–Cu Deposit in Eastern Yanbian, NE China: Implications for Depositional Environment. Acta Geol. Sin. 2012, 86, 619–629. [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Deposits | Mineral | Ore-Controlling Structure | Metallogenic Rock | Isotopic Age | Orebody Occurrence | Alteration of Wall Rock | Ore Minerals | References |
---|---|---|---|---|---|---|---|---|
Fu’anbu | Mo | NE-trending fault and NW-trending fault | adamellite | Molybdenites Re–Os isochron age of 166.9 ± 6.7 Ma | Split/within the rock mass | Potash feldspathization, sericitization, silicification, chloritization, epidotization | Molybdenite, pyrite | Modified after [10,12] |
Jidetun | Mo | NE-trending fault and NW-trending fault | adamellite, quartz diorite | molybdenites Re–Os isochron age of 169.1 ± 1.8 Ma | Ellipsoid-like, stratiform-like/within the rock mass | Potash feldspathization, sericitization, silicification, epidotization, kaolinization, greisenization | Molybdenite, pyrite | Modified after [12] |
Chang’anbu | Cu, Mo | Intersection of NE-trending fault and NW-trending fault, cryptoexplosive breccia pipe | biotite adamellite mainly | biotite adamellites U–Pb age of 182.10 ± 1.20 Ma | Stratiform, lenticular, veinlike/within the quartz vein and rock mass | Silicification, Potash feldspathization, carbonatation, chloritization, epidotization, argillization, sericitization | Molybdenite, pyrite, chalcopyrite, magnetite, sphalerite, galena | Modified after [12] |
Deposit | Sample No. | Mineral | δ34S (‰) | Pb208/Pb204 | Pb207/Pb204 | Pb206/Pb204 |
---|---|---|---|---|---|---|
Fu’anbu | Dxf115-1-1 | Pyrite | 3.1 | 38.010 | 15.520 | 18.775 |
Fu’anbu | Dxf115-1-2 | Molybdenite | 3.6 | 37.970 | 15.508 | 18.261 |
Fu’anbu | Dxf115-2-1 | Pyrite | 3.0 | 37.983 | 15.515 | 18.280 |
Fu’anbu | Dxf115-2-2 | Molybdenite | 3.5 | 37.951 | 15.504 | 18.254 |
Fu’anbu | Dxf115-3-1 | Pyrite | 4.0 | 38.137 | 15.558 | 18.299 |
Fu’anbu | Dxf115-3-2 | Molybdenite | 3.7 | 37.935 | 15.497 | 18.283 |
Fu’anbu | Dxf115-4-1 | Pyrite | 2.8 | 38.079 | 15.624 | 18.167 |
Fu’anbu | Dxf115-4-2 | Molybdenite | 3.3 | 37.934 | 15.508 | 18.252 |
Jidetun | Dj118-1 | Molybdenite | 3.0 | 37.994 | 15.513 | 18.265 |
Jidetun | Dj118-2 | Molybdenite | 3.0 | 38.000 | 15.516 | 18.364 |
Jidetun | Dj118-3 | Molybdenite | 2.3 | 37.992 | 15.516 | 18.293 |
Jidetun | Dj118-4 | Molybdenite | 2.5 | 38.297 | 15.516 | 18.528 |
Jidetun | Dj118-5 | Molybdenite | 2.3 | 38.032 | 15.525 | 18.284 |
Chang’anbu | Dc006-1 | Chalcopyrite | 1.6 | 37.956 | 15.511 | 18.236 |
Chang’anbu | Dc006-2 | Pyrite | 2.7 | 38.079 | 15.541 | 18.267 |
Chang’anbu | Dc006-3 | Pyrrhotite | 1.9 | 37.956 | 15.514 | 18.290 |
Chang’anbu | Dc007-1 | Chalcopyrite | 1.6 | 37.942 | 15.504 | 18.221 |
Chang’anbu | Dc007-2 | Pyrite | 1.2 | 37.993 | 15.511 | 18.215 |
Chang’anbu | Dc007-3 | Pyrrhotite | 0.7 | 38.158 | 15.557 | 18.235 |
Chang’anbu | Dc008-1 | Chalcopyrite | 1.3 | 37.931 | 15.502 | 18.221 |
Chang’anbu | Dc008-2 | Pyrite | 1.5 | 37.999 | 15.551 | 18.046 |
Chang’anbu | Dc009-1 | Pyrite | 1.6 | 38.148 | 15.574 | 18.143 |
Chang’anbu | Dc009-2 | Pyrrhotite | 1.4 | 38.209 | 15.583 | 18.176 |
Chang’anbu | Dc0010-1 | Pyrite | 0.3 | 38.744 | 15.643 | 18.700 |
Chang’anbu | Dc0010-2 | Pyrrhotite | 0.5 | 38.819 | 15.655 | 18.734 |
Chang’anbu | Dc0011-1 | Chalcopyrite | 0.8 | 37.972 | 15.516 | 18.238 |
Chang’anbu | Dc0011-2 | Pyrite | 1.6 | 38.018 | 15.530 | 18.231 |
Chang’anbu | Dc0012 | Molybdenite | 1.6 | 38.081 | 15.538 | 18.300 |
Chang’anbu | Dc0013 | Molybdenite | 0.9 | 38.002 | 15.509 | 18.316 |
Deposit | Sample No. | Mineral | δDV-SMOW (‰) | δ18OV-SMOW (‰) | δ18O Water (‰) | Homogenization Temperature (°C) |
---|---|---|---|---|---|---|
Fu’anbu | OHf115-1 | Quartz | −96.0 | 8.5 | 4.4 | 395.6 |
Fu’anbu | OHf115-2 | Quartz | −79.5 | 9.8 | 5.7 | 401.2 |
Fu’anbu | OHf115-3 | Quartz | −94.1 | 9.1 | 5.0 | 402.5 |
Fu’anbu | OHf115-4 | Quartz | −93.9 | 8.6 | 4.5 | 398.2 |
Fu’anbu | OHf115-5 | Quartz | −95.4 | 9.1 | 5.0 | 403.1 |
Jidetun | OHj003 | Quartz | −108.2 | 8.2 | 0.5 | 279.2 |
Jidetun | OHj004 | Quartz | −99.2 | 8.8 | 1.1 | 281.1 |
Jidetun | OHj005 | Quartz | −102.6 | 9.0 | 1.3 | 278.4 |
Jidetun | OHj006 | Quartz | −105.2 | 9.0 | 1.1 | 280.5 |
Jidetun | OHj007 | Quartz | −102.2 | 9.0 | 1.3 | 279.0 |
Chang’anbu | OHc006 | Quartz | −93.4 | 9.2 | 2.4 | 301.4 |
Chang’anbu | OHc007 | Quartz | −96.4 | 9.1 | 1.8 | 288.9 |
Chang’anbu | OHc008 | Quartz | −96.5 | 10.4 | 3.4 | 298.2 |
Chang’anbu | OHc009 | Quartz | −100.4 | 11.6 | 5.0 | 308.7 |
Chang’anbu | OHc014 | Quartz | −96.4 | 10.9 | 4.4 | 310.7 |
Chang’anbu | OHc015 | Quartz | −102.2 | 10.2 | 3.4 | 302.6 |
Chang’anbu | OHc016 | Quartz | −98.2 | 9.8 | 2.7 | 293.1 |
Chang’anbu | OHc017 | Quartz | −99.3 | 10.7 | 3.4 | 289.0 |
Deposit | Sample No. | SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | MnO | TiO2 | P2O5 | FeO | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chang’anbu | Hxc001 | 52.91 | 16.44 | 17.65 | 0.157 | 1.36 | 3.90 | 6.94 | 0.14 | 0.20 | 0.06 | 4.94 | 0.14 |
Chang’anbu | Hxc002 | 68.89 | 15.00 | 3.14 | 1.05 | 2.78 | 3.65 | 3.97 | 0.07 | 0.42 | 0.12 | 1.73 | 0.89 |
Chang’anbu | Hxc003 | 66.67 | 15.12 | 4.08 | 1.54 | 3.46 | 3.68 | 3.40 | 0.08 | 0.53 | 0.16 | 2.07 | 1.24 |
Fu’anbu | Hxf001 | 69.89 | 15.48 | 2.38 | 0.54 | 2.01 | 4.44 | 3.76 | 0.03 | 0.35 | 0.13 | 0.52 | 0.95 |
Fu’anbu | Hxf002 | 72.92 | 13.91 | 2.16 | 0.41 | 1.60 | 3.97 | 3.94 | 0.05 | 0.21 | 0.06 | 1.05 | 0.77 |
Fu’anbu | Hxf003 | 71.41 | 15.06 | 1.97 | 0.35 | 1.44 | 4.35 | 4.19 | 0.04 | 0.31 | 0.10 | 0.75 | 0.77 |
Fu’anbu | Hxf004 | 70.45 | 15.25 | 2.40 | 0.57 | 1.89 | 4.56 | 3.73 | 0.04 | 0.39 | 0.13 | 1.04 | 0.57 |
Jidetun | Hxj001 | 74.17 | 13.38 | 1.69 | 0.16 | 0.95 | 3.04 | 5.82 | 0.03 | 0.11 | 0.03 | 0.8 | 0.62 |
Jidetun | Hxj002 | 75.43 | 12.91 | 1.24 | 0.09 | 0.72 | 3.43 | 5.34 | 0.02 | 0.09 | 0.02 | 0.58 | 0.67 |
Deposit | Sample No. | Li | Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Y | Mo | Cd | In |
Chang’anbu | Hxc001 | 13.7 | 2.27 | 2.67 | 34.30 | 21.20 | 6.26 | 1.46 | 21.60 | 99.60 | 28.30 | 214 | 196 | 9.46 | 1.21 | 0.07 | 0.05 |
Chang’anbu | Hxc002 | 14.1 | 2.51 | 5.32 | 51.70 | 175 | 6.08 | 4.59 | 18.10 | 58.30 | 18.30 | 110 | 300 | 18.50 | 4.73 | 0.07 | 0.03 |
Chang’anbu | Hxc003 | 18.9 | 1.75 | 6.82 | 62.50 | 44.40 | 8.75 | 3.69 | 16.70 | 58.90 | 16.20 | 86.9 | 397 | 13.30 | 20.20 | 0.08 | 0.04 |
Fu’anbu | Hxf001 | 36.6 | 2.74 | 3.15 | 27.40 | 44.40 | 3.41 | 2.19 | 4.63 | 57.90 | 23.70 | 106 | 492 | 6.74 | 1.01 | 0.03 | 0.03 |
Fu’anbu | Hxf002 | 50.1 | 4.02 | 2.72 | 18.50 | 55.90 | 2.98 | 2.15 | 5.20 | 42.40 | 19.00 | 163 | 176 | 20.10 | 1.12 | 0.05 | 0.02 |
Fu’anbu | Hxf003 | 11.6 | 2.69 | 2.42 | 22.40 | 92 | 2.46 | 3.06 | 5.18 | 47.90 | 20.60 | 97.7 | 421 | 8.24 | 1.68 | 0.09 | 0.02 |
Fu’anbu | Hxf004 | 30.8 | 2.89 | 3.13 | 31.90 | 129 | 3.62 | 3.86 | 5.61 | 60.80 | 22.30 | 101 | 486 | 7.98 | 2.46 | 0.04 | 0.03 |
Jidetun | Hxj001 | 14.3 | 1.22 | 1.12 | 10.40 | 135 | 1.29 | 2.54 | 13.90 | 25.40 | 15.90 | 84.5 | 82.9 | 3.73 | 3.27 | 0.21 | 0.01 |
Jidetun | Hxj002 | 8.67 | 1.71 | 0.84 | 7.01 | 38.50 | 0.69 | 1.00 | 35.40 | 19.40 | 16.30 | 115 | 43.3 | 5.03 | 0.85 | 0.32 | 0.01 |
Deposit | Sample No. | Sb | Cs | Ba | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb |
Chang’anbu | Hxc001 | 0.27 | 7.52 | 505 | 13.70 | 22.60 | 2.23 | 9.29 | 1.5 | 0.47 | 1.39 | 0.25 | 1.39 | 0.28 | 0.86 | 0.15 | 1.16 |
Chang’anbu | Hxc002 | 0.31 | 8.58 | 435 | 25.70 | 48.10 | 5.51 | 20.30 | 3.78 | 0.84 | 3.17 | 0.59 | 3.09 | 0.61 | 1.88 | 0.33 | 2.45 |
Chang’anbu | Hxc003 | 0.53 | 6.18 | 442 | 18.20 | 34.80 | 4.26 | 17.30 | 3.26 | 0.81 | 2.72 | 0.46 | 2.47 | 0.48 | 1.37 | 0.23 | 1.56 |
Fu’anbu | Hxf001 | 0.11 | 2.50 | 770 | 20.90 | 39.80 | 5.05 | 19.70 | 3.16 | 0.77 | 2.37 | 0.33 | 1.45 | 0.23 | 0.60 | 0.09 | 0.64 |
Fu’anbu | Hxf002 | 0.17 | 9.85 | 349 | 23.20 | 56.20 | 5.14 | 18.80 | 3.65 | 0.61 | 3.27 | 0.60 | 3.37 | 0.69 | 2.04 | 0.38 | 2.75 |
Fu’anbu | Hxf003 | 0.14 | 1.78 | 724 | 27.20 | 52.80 | 5.66 | 21.00 | 3.3 | 0.71 | 2.66 | 0.36 | 1.64 | 0.28 | 0.76 | 0.12 | 0.79 |
Fu’anbu | Hxf004 | 0.16 | 2.31 | 698 | 26.10 | 52.50 | 6.26 | 23.70 | 4 | 0.88 | 2.9 | 0.40 | 1.77 | 0.27 | 0.74 | 0.11 | 0.74 |
Jidetun | Hxj001 | 0.09 | 2.7 | 314 | 15.10 | 45.60 | 3.10 | 10.90 | 1.65 | 0.38 | 1.51 | 0.18 | 0.803 | 0.14 | 0.40 | 0.06 | 0.46 |
Jidetun | Hxj002 | 0.25 | 2.42 | 214 | 12.00 | 23.50 | 2.48 | 8.59 | 1.43 | 0.26 | 1.21 | 0.19 | 0.92 | 0.17 | 0.51 | 0.09 | 0.61 |
Deposit | Sample No. | Lu | W | Re | Tl | Pb | Bi | Th | U | ||||||||
Chang’anbu | Hxc001 | 0.17 | 1.45 | 0.01 | 1.17 | 33.40 | 0.23 | 15.20 | 2.34 | ||||||||
Chang’anbu | Hxc002 | 0.37 | 6.43 | 0.01 | 0.79 | 22.20 | 0.10 | 34.10 | 8.09 | ||||||||
Chang’anbu | Hxc003 | 0.23 | 1.86 | 0.01 | 0.64 | 20.00 | 0.09 | 14.40 | 5.22 | ||||||||
Fu’anbu | Hxf001 | 0.09 | 1.50 | <0.01 | 0.69 | 20.80 | 0.05 | 7.97 | 0.91 | ||||||||
Fu’anbu | Hxf002 | 0.40 | 2.06 | <0.01 | 0.99 | 23.70 | 0.04 | 25.30 | 2.87 | ||||||||
Fu’anbu | Hxf003 | 0.10 | 3.10 | 0.01 | 0.55 | 18.00 | 0.03 | 7.78 | 1.27 | ||||||||
Fu’anbu | Hxf004 | 0.10 | 4.11 | <0.01 | 0.58 | 20.60 | 0.09 | 9.27 | 1.57 | ||||||||
Jidetun | Hxj001 | 0.07 | 4.46 | <0.01 | 0.46 | 25.60 | 0.03 | 16.80 | 1.39 | ||||||||
Jidetun | Hxj002 | 0.10 | 1.44 | 0.01 | 0.67 | 21.80 | 0.04 | 10.50 | 1.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, N.; Zhang, S.; Kou, L.-L.; Wang, H.-P.; Zhang, D.; Gu, Y.-C.; Wu, T. Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China. Minerals 2019, 9, 657. https://doi.org/10.3390/min9110657
Ju N, Zhang S, Kou L-L, Wang H-P, Zhang D, Gu Y-C, Wu T. Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China. Minerals. 2019; 9(11):657. https://doi.org/10.3390/min9110657
Chicago/Turabian StyleJu, Nan, Sen Zhang, Lin-Lin Kou, Hai-Po Wang, Di Zhang, Yu-Chao Gu, and Tong Wu. 2019. "Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China" Minerals 9, no. 11: 657. https://doi.org/10.3390/min9110657
APA StyleJu, N., Zhang, S., Kou, L. -L., Wang, H. -P., Zhang, D., Gu, Y. -C., & Wu, T. (2019). Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China. Minerals, 9(11), 657. https://doi.org/10.3390/min9110657