Early Jurassic Mafic Intrusions in the Southern Youjiang Basin, SW China: Petrogenesis, Tectonic and Metallogenic Implications
Abstract
:1. Introduction
2. Geological Setting and Petrography
3. Analytical Methods
3.1. Zircon U–Pb Dating
3.2. Whole-Rock Major and Trace Element and Sr–Nd Isotope Measurements
4. Results
4.1. Zircon U–Pb Ages
4.2. Whole-Rock Geochemical Data and Sr–Nd Isotopic Compositions
5. Discussion
5.1. Petrogenesis
5.1.1. Effect of Alteration, Crustal Contamination, and Fractional Crystallization
5.1.2. Origin of the Mafic Intrusions in Jingxi
5.2. Tectonic Implications
5.3. Implications for the Carlin-like Gold Mineralization in the Youjiang Basin
6. Conclusions
- (1)
- The mafic intrusions in the Jingxi area emplaced at 183 ± 3 Ma, which suggests the discovery of an Early Jurassic magmatic event in the southern Youjiang Basin.
- (2)
- The mafic intrusions in the Jingxi area have OIB-like geochemical characteristics, and magmas of these mafic rocks derived from partial melting of upwelling asthenosphere within the garnet-spinel transition zone, were as a result of the intracontinental back-arc extension caused by the steep subduction of the Paleo-Pacific plate beneath the South China Block.
- (3)
- Early Jurassic magmatism was a probable heat source for the formation of the Carlin-like gold deposits in the Youjiang Basin, and it supported a metallogenic setting of intracontinental back-arc extension and a magmatism-related metallogenic model.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, W.M.; Zhang, C.H.; Wang, Y.J.; Guo, F.; Peng, T.P. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction. Lithos 2008, 102, 218–236. [Google Scholar] [CrossRef]
- Zhou, M.F.; Zhao, J.H.; Qi, L.; Su, W.C.; Hu, R.Z. Zircon U–Pb geochronology and elemental and Sr–Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China. Contrib. Mineral. Petrol. 2006, 151, 1–19. [Google Scholar] [CrossRef]
- Xia, W.J.; Yan, Q.R.; Xiang, Z.J.; Xia, L.; Jiang, W.; Li, X.J.; Zhou, B.; Deng, L. Baddeleyite and Zircon U–Pb Dating of Badu Diabase in the Nanpanjiang Basin and Its Tectonic Significance. Acta Geosci. Sin. 2019, 40, 265–278. (In Chinese) [Google Scholar]
- Fan, W.M.; Wang, Y.J.; Peng, T.P.; Miao, L.C.; Guo, F. Ar–Ar and U–Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism. Chin. Sci. Bull. 2004, 49, 2318–2327. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, B.H.; Ding, J.; Zhang, L.K.; Zhang, B.; Chen, M.H. SHRIMP zircon U–Pb Chronology of the Badu Ophiolite in Southern Yunnan Province. Acta Geol. Sin. 2013, 87, 1498–1509. (In Chinese) [Google Scholar]
- Hu, L.S.; Du, Y.S.; Yang, J.H.; Huang, H.; Huang, H.W.; Huang, Z.Q. Geochemistry and tectonic significance of middle Triassic volcanic rocks in Nalong, Guangxi area. Geol. Rev. 2012, 58, 481–494. (In Chinese) [Google Scholar]
- Pi, Q.H.; Hu, R.Z.; Peng, K.Q.; Wu, J.B.; Wei, Z.W.; Huang, Y. Geochronology of the Zhesang gold deposit and mafic rock in Funing Country of Yunnan Province, with special reference to dynamic background of Calin-type gold deposits in the Dian-Qian-Gui region. Acta Petrol. Sin. 2016, 32, 3331–3342. (In Chinese) [Google Scholar]
- Wang, Q.F.; Groves, D. Carlin-style gold deposits, Youjiang Basin, China: Tectono-thermal and structural analogues of the Carlin-type gold deposits, Nevada, USA. Min. Depos. 2018, 53, 909–918. [Google Scholar] [CrossRef]
- Hu, R.; Fu, S.; Yong, H.; Zhou, M.F.; Fu, S.; Zhao, C.; Wang, Y.; Bi, X.; Xiao, J. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Chen, M.H.; Bagas, L.; Liao, X.; Zhang, Z.Q.; Li, Q.L. Hydrothermal apatite SIMS Th Pb dating: Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao, SW China. Lithos 2019, 324, 418–428. [Google Scholar] [CrossRef]
- Zhu, J.J.; Hu, R.Z.; Richards, J.P.; Bi, X.W.; Stern, R.; Lu, G. No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang basin, Southwest China. Ore Geol. Rev. 2017, 84, 328–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Su, W.C.; Tao, Y.; Zhang, X.C.; Liu, J.Z.; Deng, Y.M. Metallogenic model and prognosis of the Shuiyindong super-large strata-bound Carlin-type gold deposit, southwestern Guizhou Province, China. Chin. J. Geochem. 2010, 29, 157–166. [Google Scholar] [CrossRef]
- Xie, Z.; Xia, Y.; Cline, J.S.; Pribil, M.J.; Koenig, A.; Tan, Q.; Wei, D.; Wang, Z.; Yan, J. Magmatic Origin for Sediment-Hosted Au Deposits, Guizhou Province, China: In Situ Chemistry and Sulfur Isotope Composition of Pyrites, Shuiyindong and Jinfeng Deposits. Econ. Geol. 2018, 113, 1627–1652. [Google Scholar] [CrossRef]
- Tan, Q.; Xia, Y.; Xie, Z.; Wang, Z.; Wei, D.; Zhao, Y.; Yan, J.; Li, S. Two Hydrothermal Events at the Shuiyindong Carlin-Type Gold Deposit in Southwestern China: Insight from Sm–Nd Dating of Fluorite and Calcite. Minerals 2019, 9, 230. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Dong, W.; Zhang, X.; Shen, N.; Hu, R.; Hofstra, A.H.; Cheng, L.; Xia, Y.; Yang, K. Carlin-Type Gold Deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China. Rev. Econ. Geol. 2018, 20, 157–185. [Google Scholar]
- Yan, J.; Hu, R.Z.; Liu, S.; Lin, Y.T.; Zhang, J.C.; Fu, S.L. NanoSIMS element mapping and sulfur isotope analysis of Au-bearing pyrite from Lannigou Carlin-type Au deposit in SW China: New insights into the origin and evolution of Au-bearing fluids. Ore Geol. Rev. 2018, 92, 29–41. [Google Scholar] [CrossRef]
- Metcalfe, I. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Res 2006, 9, 24–46. [Google Scholar] [CrossRef]
- Nevolko, P.A.; Trong Hoa, T.; Yudin, D.S.; Thi Phuong, N. Ar-Ar ages of gold deposits in the Song Hien domain (NE Vietnam): Tectonic settings and comparison with Golden Triangle in China in terms of a single metallogenic province. Ore Geol. Rev. 2017, 89, 544–556. [Google Scholar] [CrossRef]
- Wang, Z.S. Affrmation of the Jurassic in Longtoushan of Zhenfeng, Guizhou, and its geological signifcance. Guizhou Geol. 1997, 14, 201–203. (In Chinese) [Google Scholar]
- GXBGMR (Guangxi Bureau of Geology and Mineral Resources). Regional Geology of Guangxi; Geological Publishing House: Beijing, China, 1985; pp. 1–853. (In Chinese) [Google Scholar]
- Liu, S.; Su, W.; Hu, R.; Feng, C.; Gao, S.; Coulson, I.M.; Wang, T.; Feng, G.; Tao, Y.; Xia, Y. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos 2010, 114, 253–264. [Google Scholar] [CrossRef]
- Duan, L.; Meng, Q.R.; Christie-Blick, N.; Wu, G.L. New insights on the Triassic tectonic development of South China from the detrital zircon provenance of Nanpanjiang turbidites. Geol. Soc. Am. Bull. 2018, 130, 24–34. [Google Scholar] [CrossRef]
- Duan, L.; Meng, Q.R.; Wu, G.-L.; Yang, Z.; Wang, J.; Zhan, R. Nanpanjiang basin: A window on the tectonic development of south China during Triassic assembly of the southeastern and eastern Asia. Gondwana Res. 2020, 78, 189–209. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y.P.G.; Guo, L.G.; Ye, L.N.; Pi, D.H.; Liao, Z.E. Geochemistry and tectonic setting of the Babu Ophiolite, Southeast Yunnan. Acta Mineral. Sin. 2008, 28, 6–14. [Google Scholar]
- GXBGMR (Guangxi Bureau of Geology and Mineral Resources). Geological Map and Report of Jingxi Sheet (F-48-11), Scale 1:200,000; GXBGMR (Guangxi Bureau of Geology and Mineral Resources): Guilin, China, 1969; pp. 1–64. (In Chinese) [Google Scholar]
- Hou, K.J.; Li, Y.H.; Tian, Y.R. In situ U–Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Miner. Depos. 2009, 28, 481–492. (In Chinese) [Google Scholar]
- Pu, W.; Gao, J.F.; Zhao, K.D.; Ling, H.; Jiang, S. Separation Method of Rb–Sr, Sm–Nd Using DCTA and HIBA. J. Nanjing Univ. 2005, 41, 445–450. (In Chinese) [Google Scholar]
- Winchester, J.; Floyd, P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Espanon, V.R.; Chivas, A.R.; Kinsley, L.P.J.; Dosseto, A. Geochemical variations in the Quaternary Andean back-arc volcanism, southern Mendoza, Argentina. Lithos 2014, 208–209, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A. Mantle geochemistry: The message from oceanic volcanism. Nature 1997, 385, 219. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Zimmer, M.; Kroner, A.; Jochum, K.P.; Reischmann, T.; Todt, W. The Gabal-Gerf complex: A Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem. Geol. 1995, 123, 29–51. [Google Scholar] [CrossRef]
- Cen, T.; Li, W.X.; Wang, X.C.; Pang, C.J.; Li, Z.X.; Xing, G.F.; Zhao, X.L.; Tao, J.H. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos 2016, 256, 311–330. [Google Scholar] [CrossRef]
- He, Z.Y.; Xu, X.S.; Niu, Y.L. Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China. Lithos 2010, 119, 621–641. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Peng, T.; Guo, F. Elemental and Sr–Nd isotopic systematics of the early Mesozoic volcanic sequence in southern Jiangxi Province, South China: Petrogenesis and tectonic implications. Int. J. Earth Sci. 2005, 94, 53–65. [Google Scholar] [CrossRef]
- Li, X.H.; Chung, S.L.; Zhou, H.W.; Lo, C.H.; Liu, Y.; Chen, C.W. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: Ar-40/Ar-39 dating, geochemistry, Sr–Nd isotopes and implications for the tectonic evolution of SE China. Geol. Soc. Lond. Spec. Publ. 2004, 226, 193–215. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Z.; Liu, D.Y.; Li, W.X. Jurassic gabbro-granite-syenite suites from Southern Jiangxi province, SE China: Age, origin, and tectonic significance. Int. Geol. Rev. 2003, 45, 898–921. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Guo, F.; Peng, T.P.; Li, C.W. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. Int. Geol. Rev. 2003, 45, 263–286. [Google Scholar] [CrossRef]
- Wood, D.A.; Joron, J.L.; Treuil, M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett. 1979, 45, 326–336. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res. 2003, 126, 197–218. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W.; Rosing, M.T. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem. Geol. 2002, 184, 231–254. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 659. [Google Scholar]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Weaver, B.L. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet. Sci. Lett. 1991, 104, 381–397. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A. Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: An example from the British Tertiary Province. Chem. Geol. 1988, 68, 1–15. [Google Scholar] [CrossRef]
- Fitton, J.G.; James, D.; Kempton, P.D.; Ormerod, D.S.; Leeman, W.P. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. J. Pet. Spec. 1988, 1, 331–349. [Google Scholar] [CrossRef]
- Yang, J.H.; Sun, J.F.; Chen, F.K.; Wilde, S.A.; Wu, F.Y. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of the Eastern North China Craton. J. Petrol. 2007, 48, 1973–1997. [Google Scholar] [CrossRef] [Green Version]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Xu, Y.G.; Ma, J.L.; Frey, F.A.; Feigenson, M.D.; Liu, J.F. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem. Geol. 2005, 224, 247–271. [Google Scholar] [CrossRef]
- Shaw, D.M. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 1970, 34, 237–243. [Google Scholar] [CrossRef]
- Johnson, K.T.M. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol. 1998, 133, 60–68. [Google Scholar] [CrossRef]
- Xu, Y.G.; Chung, S.L.; Jahn, B.M.; Wu, G.Y. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Kay, R.W.; Kay, S.M. Delamination and delamination magmatism. Tectonophysics 1993, 219, 177–189. [Google Scholar] [CrossRef]
- Bonin, B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 2004, 78, 1–24. [Google Scholar] [CrossRef]
- Søager, N.; Holm, P.M.; Llambías, E.J. Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem. Geol. 2013, 349, 36–53. [Google Scholar] [CrossRef]
- Qiu, L.; Yang, W.X.; Yan, D.P.; Wells, M.L.; Qiu, J.T.; Gao, T.; Dong, J.M.; Zhang, L.L.; Wang, F.Y. Geochronology of early Mesozoic diabase units in southwestern China: Metallogenic and tectonic implications. Geol. Mag. 2019, 156, 1141–1156. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.T.; He, B.; Mundil, R.; Xu, Y.G. CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos 2014, 204, 14–19. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Huang, X.L.; Luo, Z.Y.; Shi, Y.R.; Yang, Q.J.; Yu, S.Y. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet. Sci. Lett. 2007, 255, 306–323. [Google Scholar] [CrossRef]
- Dilek, Y.; Altunkaynak, Ş. Cenozoic Crustal Evolution and Mantle Dynamics of Post-Collisional Magmatism in Western Anatolia. Int. Geol. Rev. 2007, 49, 431–453. [Google Scholar] [CrossRef]
- Bonin, B.L.; Azzouni-Sekkal, A.; Bussy, F.; Ferrag, S. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: Petrologic constraints and geodynamic settings. Lithos 1998, 45, 45–70. [Google Scholar] [CrossRef]
- Floyd, P.A.; Kelling, G.; Gokcen, S.L.; Gokcen, N. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chem. Geol. 1991, 89, 263–279. [Google Scholar] [CrossRef]
- Shuto, K.; Ishimoto, H.; Hirahara, Y.; Sato, M.; Matsui, K.; Fujibayashi, N.; Takazawa, E.; Yabuki, K.; Sekine, M.; Kato, M.; et al. Geochemical secular variation of magma source during Early to Middle Miocene time in the Niigata area, NE Japan: Asthenospheric mantle upwelling during back-arc basin opening. Lithos 2006, 86, 1–33. [Google Scholar] [CrossRef]
- Woodhead, J.; Eggins, S.; Gamble, J. High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 1993, 114, 491–504. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile element fingerprinting of ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; He, B.; Li, W.X.; Li, Q.L.; Gao, Y.; Wang, X.C. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons. Chem. Geol. 2012, 328, 195–207. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X.; Wang, Y. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. J. Geol. 2006, 114, 341–353. [Google Scholar] [CrossRef]
- Xu, C.H.; Zhang, L.; Shi, H.S.; Brix, M.R.; Huhma, H.; Chen, L.H.; Zhang, M.Q.; Zhou, Z.Y. Tracing an Early Jurassic magmatic arc from South to East China Seas. Tectonics 2017, 36, 466–492. [Google Scholar] [CrossRef]
- Yuan, W.; Yang, Z.Y.; Zhao, X.X.; Santosh, M.; Zhou, X.J. Early Jurassic granitoids from deep drill holes in the East China Sea Basin: Implications for the initiation of Palaeo-Pacific tectono-magmatic cycle. Int. Geol. Rev. 2018, 60, 813–824. [Google Scholar] [CrossRef]
- Yui, T.F.; Chu, H.T.; Suga, K.; Lan, C.Y.; Chung, S.H.; Wang, K.L.; Grove, M. Subduction-related 200 Ma Talun metagranite, SE Taiwan: An age constraint for palaeo-Pacific plate subduction beneath South China Block during the Mesozoic. Int. Geol. Rev. 2017, 59, 333–346. [Google Scholar] [CrossRef]
- Faure, M.; Ishida, K. The Mid-Upper Jurassic olistostrome of the west Philippines: A distinctive key-marker for the North Palawan block. J. Southeast Asian Earth Sci. 1990, 4, 61–67. [Google Scholar] [CrossRef]
- Isozaki, Y. Jurassic accretion tectonics of Japan. Isl. Arc 1997, 6, 25–51. [Google Scholar] [CrossRef]
- Wakita, K.; Metcalfe, I. Ocean plate stratigraphy in East and Southeast Asia. J. Asian Earth Sci. 2005, 24, 679–702. [Google Scholar] [CrossRef]
- Yui, T.F.; Maki, K.; Lan, C.Y.; Hirata, T.; Chu, H.T.; Kon, Y.; Yokoyama, T.D.; Jahn, B.M.; Ernst, W.G. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics. Tectonophysics 2012, 541, 31–42. [Google Scholar] [CrossRef]
- Chen, M.H.; Mao, J.W.; Qu, W.J.; Wu, L.L.; Phillip, J.U.; Tony, N.; Zheng, J.M.; Qin, Y.Z. Re-Os Dating of Arsenian Pyrites from the Lannigou Gold Deposit, Zhenfeng, Guizhou Province, and Its Geological Significances. Geol. Rev. 2007, 53, 371–382. (In Chinese) [Google Scholar]
- Chen, M.H.; Huang, Q.W.; Hu, Y.; Chen, Z.Y.; Zhang, W. Genetic Types of Phyllosilicate (Micas) and Its 39Ar–40Ar Dating in Lannigou Gold Deposit, Guizhou Province, China. Acta Mineral. Sin. 2009, 29, 353–362. (In Chinese) [Google Scholar]
- Muntean, J.L.; Cline, J.S.; Simon, A.C.; Longo, A.A. Magmatic–hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat. Geosci. 2011, 4, 122–127. [Google Scholar] [CrossRef]
- Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary. Min. Depos. 2006, 41, 517–525. [Google Scholar] [CrossRef]
Spot | U | Pb | Th/U | 207Pb/235U | 206Pb/238U | Age (Ma) | Con % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | Ratio | 1σ | Ratio | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |||
17Nb-1, micro-gabbro | ||||||||||||||
01 | 568 | 99 | 0.77 | 0.2083 | 0.0073 | 0.0293 | 0.0004 | 264.9 | 77.8 | 192.1 | 6.2 | 186.4 | 2.6 | 96 |
02 | 139 | 28 | 0.99 | 0.2117 | 0.0110 | 0.0284 | 0.0005 | 376.0 | 109 | 195.0 | 9.2 | 180.5 | 3.3 | 92 |
03 | 357 | 62 | 0.84 | 0.2040 | 0.0068 | 0.0278 | 0.0004 | 361.2 | 77.8 | 188.5 | 5.8 | 176.9 | 2.7 | 93 |
04 | 204 | 42 | 0.98 | 0.2090 | 0.0119 | 0.0278 | 0.0005 | 383.4 | 120 | 192.7 | 10.0 | 177.1 | 3.3 | 91 |
05 | 211 | 48 | 1.20 | 0.1982 | 0.0090 | 0.0287 | 0.0005 | 205.6 | 98.1 | 183.6 | 7.7 | 182.6 | 3.1 | 99 |
06 | 439 | 90 | 0.77 | 0.2675 | 0.0110 | 0.0347 | 0.0006 | 431.5 | 75.9 | 240.7 | 8.8 | 220.1 | 3.5 | 91 |
107 | 456 | 47 | 0.32 | 0.2602 | 0.0076 | 0.0362 | 0.0005 | 294.5 | 59.3 | 234.9 | 6.1 | 229.0 | 3.4 | 97 |
08 | 121 | 23 | 0.47 | 0.4319 | 0.0162 | 0.0530 | 0.0008 | 576.0 | 76.8 | 364.5 | 11.5 | 333.2 | 4.9 | 91 |
09 | 863 | 119 | 0.63 | 0.2154 | 0.0059 | 0.0298 | 0.0005 | 298.2 | 45.4 | 198.1 | 4.9 | 189.5 | 3.2 | 95 |
10 | 118 | 17 | 0.74 | 0.2120 | 0.0122 | 0.0286 | 0.0005 | 350.1 | 126 | 195.2 | 10.2 | 181.9 | 2.8 | 92 |
11 | 769 | 120 | 0.91 | 0.1887 | 0.0042 | 0.0278 | 0.0004 | 161.2 | 43.5 | 175.5 | 3.6 | 176.9 | 2.6 | 99 |
12 | 610 | 109 | 1.19 | 0.2149 | 0.0112 | 0.0288 | 0.0006 | 301.9 | 94.4 | 197.7 | 9.4 | 182.8 | 3.8 | 92 |
13 | 200 | 36 | 0.53 | 0.3416 | 0.0115 | 0.0474 | 0.0008 | 294.5 | 65.7 | 298.4 | 8.7 | 298.5 | 5.0 | 99 |
14 | 341 | 62 | 0.57 | 0.3350 | 0.0081 | 0.0454 | 0.0007 | 346.4 | 51.8 | 293.4 | 6.2 | 286.4 | 4.4 | 97 |
15 | 395 | 48 | 0.45 | 0.2485 | 0.0072 | 0.0352 | 0.0005 | 257.5 | 70.4 | 225.3 | 5.8 | 223.1 | 3.4 | 99 |
16 | 543 | 121 | 0.98 | 0.2203 | 0.0065 | 0.0292 | 0.0006 | 279.7 | 90.7 | 202.1 | 5.4 | 185.9 | 3.7 | 91 |
17 | 507 | 67 | 0.55 | 0.2080 | 0.0067 | 0.0296 | 0.0006 | 105.6 | 90.7 | 191.8 | 5.6 | 187.8 | 3.5 | 97 |
18 | 915 | 148 | 0.67 | 0.2111 | 0.0095 | 0.0282 | 0.0009 | 211.2 | 111 | 194.4 | 8.0 | 179.2 | 5.6 | 91 |
19 | 767 | 168 | 1.04 | 0.2079 | 0.0054 | 0.0299 | 0.0005 | 200.1 | 73.1 | 191.8 | 4.6 | 190.1 | 2.9 | 99 |
20 | 853 | 135 | 0.74 | 0.2073 | 0.0045 | 0.0290 | 0.0005 | 294.5 | 46.3 | 191.3 | 3.8 | 184.2 | 2.8 | 96 |
21 | 368 | 193 | 0.96 | 0.6043 | 0.0146 | 0.0781 | 0.0013 | 477.8 | 44.4 | 479.9 | 9.3 | 484.5 | 7.6 | 99 |
22 | 262 | 119 | 0.70 | 0.6918 | 0.0148 | 0.0856 | 0.0013 | 550.0 | 40.7 | 533.9 | 8.9 | 529.7 | 7.7 | 99 |
23 | 238 | 96 | 0.81 | 0.5385 | 0.0161 | 0.0672 | 0.0011 | 600.0 | 59.3 | 437.4 | 10.6 | 419.2 | 6.4 | 95 |
24 | 116 | 51 | 0.32 | 1.4241 | 0.0345 | 0.1506 | 0.0021 | 892.3 | 48.1 | 899.1 | 14.5 | 904.5 | 11.6 | 99 |
25 | 159 | 52 | 0.93 | 0.3492 | 0.0113 | 0.0475 | 0.0008 | 353.8 | 70.4 | 304.1 | 8.5 | 299.3 | 4.6 | 98 |
26 | 530 | 163 | 0.85 | 0.4025 | 0.0120 | 0.0514 | 0.0008 | 479.7 | 83.3 | 343.5 | 8.7 | 323.1 | 5.2 | 93 |
27 | 483 | 218 | 0.42 | 1.3083 | 0.0273 | 0.1321 | 0.0021 | 977.5 | 31.5 | 849.4 | 12.0 | 799.7 | 11.9 | 93 |
28 | 194 | 65 | 1.05 | 0.3141 | 0.0116 | 0.0446 | 0.0008 | 255.6 | 79.6 | 277.3 | 9.0 | 281.6 | 4.9 | 98 |
29 | 1379 | 490 | 1.00 | 0.4194 | 0.0092 | 0.0501 | 0.0007 | 620.4 | 35.2 | 355.6 | 6.6 | 315.1 | 4.5 | 87 |
30 | 203 | 128 | 0.66 | 1.1598 | 0.0251 | 0.1271 | 0.0017 | 809.3 | 40.7 | 781.9 | 11.8 | 771.5 | 9.5 | 98 |
Sample | 17Lb-1 | 17Lb-2 | 17Lb-3 | 17Lb-4 | 17Lb-5 | 17Lb-6 | 17Lb-7 | 17Nb-1 | 17Nb-2 | 17Nb-3 | 17Nb-4 | 17Nb-5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 48.62 | 48.00 | 47.56 | 47.54 | 48.35 | 48.58 | 48.19 | 51.11 | 53.00 | 50.94 | 52.96 | 51.14 |
Al2O3 | 16.38 | 16.70 | 16.90 | 16.65 | 16.59 | 16.26 | 16.59 | 16.67 | 15.39 | 16.32 | 15.32 | 16.67 |
CaO | 8.27 | 9.01 | 9.28 | 9.72 | 9.51 | 10.21 | 9.06 | 7.50 | 4.14 | 7.57 | 4.15 | 7.52 |
Fe2O3 | 2.08 | 1.75 | 1.34 | 1.82 | 2.15 | 1.92 | 2.39 | 1.71 | 2.82 | 2.28 | 2.45 | 1.66 |
FeO | 6.59 | 5.80 | 6.30 | 5.95 | 5.30 | 6.27 | 5.41 | 5.73 | 6.83 | 5.19 | 6.74 | 5.80 |
K2O | 1.35 | 0.75 | 0.84 | 0.85 | 0.70 | 0.26 | 0.61 | 2.14 | 2.50 | 2.20 | 2.50 | 2.13 |
MgO | 7.09 | 5.57 | 5.41 | 5.80 | 5.87 | 7.06 | 5.96 | 5.82 | 5.33 | 5.63 | 5.32 | 5.82 |
MnO | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.12 |
Na2O | 3.94 | 4.91 | 4.76 | 4.47 | 4.84 | 4.05 | 4.73 | 4.02 | 5.00 | 3.98 | 5.03 | 4.04 |
P2O5 | 0.22 | 0.26 | 0.25 | 0.24 | 0.22 | 0.23 | 0.22 | 0.25 | 0.38 | 0.28 | 0.38 | 0.26 |
TiO2 | 1.30 | 1.28 | 1.33 | 1.39 | 1.25 | 1.37 | 1.29 | 1.30 | 1.87 | 1.41 | 1.86 | 1.30 |
LOI | 3.02 | 4.52 | 4.55 | 4.56 | 4.67 | 3.09 | 4.43 | 2.61 | 2.48 | 2.76 | 2.43 | 2.58 |
Total | 98.99 | 98.68 | 98.65 | 99.12 | 99.57 | 99.42 | 99.00 | 98.98 | 99.85 | 98.67 | 99.25 | 99.04 |
Mg# | 0.66 | 0.63 | 0.61 | 0.64 | 0.67 | 0.67 | 0.66 | 0.65 | 0.58 | 0.66 | 0.59 | 0.64 |
La | 13.00 | 17.00 | 15.90 | 14.10 | 14.00 | 16.60 | 16.10 | 16.60 | 27.70 | 18.90 | 28.50 | 16.30 |
Ce | 25.40 | 31.80 | 30.50 | 27.70 | 27.10 | 29.40 | 28.30 | 31.40 | 56.60 | 35.70 | 57.00 | 31.40 |
Pr | 3.49 | 4.38 | 4.12 | 3.75 | 3.60 | 4.71 | 4.08 | 4.17 | 6.95 | 4.70 | 7.03 | 4.10 |
Nd | 14.80 | 18.00 | 17.00 | 15.20 | 14.50 | 19.60 | 17.20 | 17.00 | 26.30 | 18.80 | 26.90 | 16.80 |
Sm | 3.31 | 3.88 | 3.57 | 3.42 | 3.21 | 4.41 | 3.77 | 3.66 | 5.61 | 4.02 | 5.74 | 3.62 |
Eu | 1.26 | 1.45 | 1.42 | 1.30 | 1.26 | 1.67 | 1.48 | 1.39 | 1.89 | 1.50 | 1.98 | 1.38 |
Gd | 3.88 | 4.40 | 4.07 | 3.77 | 3.66 | 5.16 | 4.31 | 4.12 | 6.11 | 4.55 | 6.26 | 4.10 |
Tb | 0.57 | 0.66 | 0.62 | 0.57 | 0.56 | 0.75 | 0.65 | 0.61 | 0.89 | 0.66 | 0.91 | 0.61 |
Dy | 3.18 | 3.58 | 3.36 | 3.13 | 3.15 | 4.25 | 3.53 | 3.25 | 4.69 | 3.60 | 4.81 | 3.29 |
Ho | 0.68 | 0.75 | 0.69 | 0.64 | 0.65 | 0.88 | 0.73 | 0.66 | 0.96 | 0.74 | 1.00 | 0.66 |
Er | 1.77 | 1.89 | 1.76 | 1.66 | 1.61 | 2.13 | 1.86 | 1.66 | 2.41 | 1.84 | 2.44 | 1.65 |
Tm | 0.25 | 0.27 | 0.25 | 0.24 | 0.24 | 0.29 | 0.27 | 0.23 | 0.32 | 0.25 | 0.33 | 0.23 |
Yb | 1.43 | 1.52 | 1.42 | 1.33 | 1.36 | 1.56 | 1.48 | 1.28 | 1.87 | 1.42 | 1.97 | 1.27 |
Lu | 0.23 | 0.25 | 0.24 | 0.22 | 0.23 | 0.26 | 0.24 | 0.21 | 0.30 | 0.24 | 0.32 | 0.21 |
Y | 14.50 | 16.90 | 15.20 | 14.50 | 15.10 | 19.40 | 16.80 | 15.30 | 21.30 | 16.80 | 21.10 | 14.90 |
Sc | 20.20 | 19.50 | 19.10 | 20.50 | 21.20 | 27.30 | 22.00 | 18.50 | 17.50 | 19.20 | 17.30 | 18.10 |
V | 172 | 151 | 161 | 174 | 146 | 194 | 158 | 161 | 166 | 163 | 170 | 159 |
Co | 34.20 | 29.70 | 32.00 | 32.40 | 30.70 | 36.90 | 30.30 | 29.50 | 24.70 | 29.30 | 25.50 | 28.50 |
Ni | 86.40 | 126 | 109 | 111 | 119 | 120 | 136 | 60.30 | 17.20 | 60 | 17.40 | 60.20 |
Cu | 57.20 | 66.00 | 69.40 | 66.90 | 65.20 | 87.90 | 80.20 | 29.00 | 16.50 | 35.90 | 17.30 | 25.90 |
Rb | 19.70 | 14.80 | 16.20 | 17.00 | 13.60 | 4.63 | 12.40 | 24.80 | 27.00 | 25.30 | 27.00 | 24.80 |
Sr | 628 | 752 | 794 | 758 | 686 | 695 | 652 | 1038 | 346 | 1043 | 344 | 1010 |
Zr | 85.70 | 121 | 123 | 109 | 112 | 101 | 113 | 108 | 175 | 121 | 179 | 109 |
Nb | 14.10 | 19.90 | 19.90 | 18.40 | 18.00 | 15.70 | 18.80 | 18.20 | 30.60 | 20.60 | 31.60 | 18.00 |
Ta | 0.96 | 1.34 | 1.34 | 1.21 | 1.21 | 1.06 | 1.25 | 1.21 | 1.99 | 1.33 | 2.05 | 1.22 |
Ba | 307 | 593 | 695 | 481 | 496 | 544 | 470 | 445 | 485 | 452 | 488 | 447 |
Hf | 2.47 | 3.10 | 3.04 | 2.89 | 2.88 | 2.65 | 2.92 | 2.85 | 4.41 | 3.17 | 4.60 | 2.82 |
Pb | 2.92 | 2.20 | 5.38 | 2.19 | 1.63 | 2.72 | 2.01 | 2.00 | 3.60 | 3.78 | 3.62 | 2.02 |
Th | 2.08 | 2.40 | 2.27 | 2.00 | 2.17 | 1.79 | 2.18 | 2.87 | 4.96 | 3.23 | 5.07 | 2.90 |
U | 0.47 | 0.61 | 0.58 | 0.51 | 0.56 | 0.46 | 0.55 | 0.68 | 1.20 | 0.77 | 1.21 | 0.70 |
Cr | 231 | 217 | 196 | 262 | 280 | 401 | 303 | 292 | 53.40 | 313 | 54 | 288 |
La/Ta | 13.54 | 12.69 | 11.87 | 11.65 | 11.57 | 15.66 | 12.88 | 13.72 | 13.92 | 14.21 | 13.90 | 13.36 |
La/Nb | 0.92 | 0.85 | 0.80 | 0.77 | 0.78 | 1.06 | 0.86 | 0.91 | 0.91 | 0.92 | 0.90 | 0.91 |
Zr/Nb | 6.08 | 6.08 | 6.18 | 5.92 | 6.22 | 6.43 | 6.01 | 5.93 | 5.72 | 5.87 | 5.66 | 6.06 |
Th/La | 0.16 | 0.14 | 0.14 | 0.14 | 0.16 | 0.11 | 0.14 | 0.17 | 0.18 | 0.17 | 0.18 | 0.18 |
Nb/U | 30.00 | 32.62 | 34.31 | 36.08 | 32.14 | 34.13 | 34.18 | 26.76 | 25.50 | 26.75 | 26.12 | 25.71 |
Ti/Y | 518 | 433 | 513 | 550 | 479 | 410 | 460 | 485 | 488 | 471 | 512 | 501 |
[La/Yb]N | 6.52 | 8.02 | 8.03 | 7.60 | 7.38 | 7.63 | 7.80 | 9.30 | 10.63 | 9.55 | 10.38 | 9.21 |
Sample | Age (Ma) | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | ±1σ | (87Sr/86Sr)i | Sm (ppm) | Nd (ppm) | 147Sm/144Nd | 143Nd/144Nd | ±1σ | (143Nd/144Nd)i | εNd(t) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17Lb-1 | 183 | 19.7 | 628.0 | 0.0908 | 0.705914 | 5 | 0.705677 | 3.31 | 14.8 | 0.1352 | 0.512549 | 2 | 0.512387 | −0.30 |
17-Lb2 | 183 | 14.8 | 752.0 | 0.0570 | 0.705808 | 8 | 0.705660 | 3.88 | 18 | 0.1303 | 0.512528 | 2 | 0.512372 | −0.59 |
17Nb-1 | 183 | 24.8 | 1038.0 | 0.0692 | 0.705180 | 6 | 0.705000 | 3.66 | 17 | 0.1302 | 0.512448 | 3 | 0.512292 | −2.16 |
17Nb-2 | 183 | 27.0 | 346.0 | 0.2260 | 0.704929 | 6 | 0.704341 | 5.61 | 26.3 | 0.1290 | 0.512450 | 2 | 0.512295 | −2.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Yan, Q.; Deng, L.; Zhou, B.; Xiang, Z.; Xia, W. Early Jurassic Mafic Intrusions in the Southern Youjiang Basin, SW China: Petrogenesis, Tectonic and Metallogenic Implications. Minerals 2019, 9, 771. https://doi.org/10.3390/min9120771
Jiang W, Yan Q, Deng L, Zhou B, Xiang Z, Xia W. Early Jurassic Mafic Intrusions in the Southern Youjiang Basin, SW China: Petrogenesis, Tectonic and Metallogenic Implications. Minerals. 2019; 9(12):771. https://doi.org/10.3390/min9120771
Chicago/Turabian StyleJiang, Wen, Quanren Yan, Li Deng, Bin Zhou, Zhongjin Xiang, and Wenjing Xia. 2019. "Early Jurassic Mafic Intrusions in the Southern Youjiang Basin, SW China: Petrogenesis, Tectonic and Metallogenic Implications" Minerals 9, no. 12: 771. https://doi.org/10.3390/min9120771
APA StyleJiang, W., Yan, Q., Deng, L., Zhou, B., Xiang, Z., & Xia, W. (2019). Early Jurassic Mafic Intrusions in the Southern Youjiang Basin, SW China: Petrogenesis, Tectonic and Metallogenic Implications. Minerals, 9(12), 771. https://doi.org/10.3390/min9120771