Geochemical Study of Weathered Coal, a Co-Substrate for Bioremediation of South African Coal Discard Dumps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Analytical Techniques and Procedures
3. Results
3.1. Bulk Characterization of Kromdraai Weathered Coal
3.2. Inorganic (Ash) Geochemistry
3.3. Pyrolysis GC-MS
3.4. On the In Situ Formation of Humic-Like Substances
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Couch, G.R. Biotechnology and Coal; IEA Coal Research: London, UK, 1987. [Google Scholar]
- Truter, W.J.; Rethman, N.F.G.; Potgieter, C.E.; Kruger, R.A. Re-Vegetation of Cover Soils and Coal Discard Material Ameliorated with Class F Fly Ash. Chapter 6. Available online: https://repository.up.ac.za/bitstream/handle/2263/25594/Complete.pdf?sequence=8#page=177 (accessed on 2 February 2016).
- Claassens, S.; Jansen van Rensburg, P.J.; van Rensburg, L. Soil microbial community structure of coal mine discard under rehabilitation. Water Air Soil Pollut. 2006, 174, 355–366. [Google Scholar] [CrossRef]
- Limpitlaw, D.; Aken, M.; Lodewijks, H.; Viljoen, J. Post mining rehabilitation, land use and pollution at collieries in South Africa. In Colloquium: Sustainable Development in the Life of Coal Mining; South African Institute of Mining and Metallurgy: Boksburg, South Africa, 2005; pp. 1–10. [Google Scholar]
- Limpitlaw, D.; Briel, A. Post-mining land use opportunities in developing countries—A review. J. S. Afr. Inst. Min. Met. 2015, 114, 1–5. [Google Scholar]
- Falcon, R.M.S. Macro- and micro-factors affecting coal-seam quality and distribution in southern Africa with particular reference to the No. 2 seam, Witbank coalfield, South Africa. Int. J. Coal Geol. 1989, 12, 681–731. [Google Scholar] [CrossRef]
- Smith, D.A.M.; Whittaker, R.R.L.G. The Coalfields of Southern Africa: An Introduction. In Mineral Deposits of Southern Africa; Anhaeusser, C.R., Maske, S., Eds.; Geological Society of Southern Africa: Johannesburg, South Africa, 1986; Volume II, pp. 1875–1878. [Google Scholar]
- Falcon, R.M.S. A brief review of the origin, formation and distribution of coal in Southern Africa. In Mineral Deposits of Southern Africa; Anhaeusser, C.R., Maske, S., Eds.; Geological Society of South Africa: Johannesburg, South Africa, 1986; Volume II, pp. 1879–1898. [Google Scholar]
- Snyman, C.P. The role of coal petrography in understanding the properties of South African coal. Int. J. Coal Geol. 1989, 14, 83–101. [Google Scholar] [CrossRef]
- Snyman, C.P.; Barclay, J. The coalification of South African coal. Int. J. Coal Geol. 1989, 13, 375–390. [Google Scholar] [CrossRef]
- Snyman, C.P.; Van Vuuren, M.C.J.; Barnard, J.M. Chemical and Physical Characteristics of South African Coal and a Suggested Classification System; Coal Report no. 8306; National Institute for Coal Research: Pretoria, South Africa, 1984; pp. 1–63. [Google Scholar]
- Snyman, C.P.; Botha, W.J. Coal in South Africa. J. Afr. Earth Sci. 1993, 16, 171–180. [Google Scholar] [CrossRef]
- Department of Energy. National Inventory Discard and Duff Coal—2001: Summary Report; Republic of South Africa: Pretoria, South Africa, 2001. Available online: http://www.energy.gov.za/Coal/coal_discard_report.pdf (accessed on 1 August 2019).
- Carlsen, L.; Christiansen, J.V. Flash pyrolysis of coals—A new approach of classification. J. Anal. Appl. Pyrolysis 1995, 35, 77–91. [Google Scholar] [CrossRef]
- Han, Z.; Kruge, M.A. Classification of torbanite and cannel coal: II. Insights from pyrolysis-GC/MS and multivariate statistical analysis. Int. J. Coal Geol. 1999, 38, 203–218. [Google Scholar] [CrossRef]
- Ingram, G.R.; Rimstidt, J.D. Natural weathering of coal. Fuel 1984, 63, 292–296. [Google Scholar] [CrossRef]
- Kurková, M.; Klika, Z.; Kliková, C.; Havel, J. Humic acids from oxidized coals: I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Chemosphere 2004, 54, 1237–1245. [Google Scholar] [CrossRef]
- Yun, Y.; Meuzelaar, H.L.C. Development of a reliable coal oxidation (weathering) index—Slurry pH and its application. Fuel Proc. Technol. 1991, 27, 179–202. [Google Scholar] [CrossRef]
- Yun, Y.; Jakab, E.; McClennen, W.H.; Hill, G.R.; Meuzelaar, H.L.C. Role of aliphatic and aromatic coal structures and macerals in low temperature oxidation processes. ACS Div. Fuel Chem. Prepr. 1987, 32, 129–137. [Google Scholar]
- Cowan, A.K.; Lodewijks, H.M.; Sekhohola, L.M.; Edeki, O.G. In situ bioremediation of South African coal discard dumps. In Mine Closure 2016—Proceedings; Fourie, A.B., Tibbett, M., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2016; pp. 501–509. ISBN 978-0-9924810-4-9. [Google Scholar]
- Igbinigie, E.E.; Atkins, S.; van Breugel, Y.; van Dyke, S.; Davies-Coleman, M.T.; Rose, P.D. Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri. Biotechnol. J. 2008, 3, 1407–1416. [Google Scholar] [CrossRef]
- Igbinigie, E.E.; Mutambanengwe, C.Z.; Rose, P.D. Phyto-bioconversion of hard coal in the Cyanodon dactylon/coal rhizosphere. Biotechnol. J. 2010, 5, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Sekhohola, L.M.; Isaacs, M.L.; Cowan, A.K. Fungal colonisation and enzyme-mediated metabolism of waste coal by Neosartorya fischeri strain ECCN 84. Biosci. Biotech. Biochem. 2014, 78, 1797–1802. [Google Scholar] [CrossRef]
- Mukasa-Mugerwa, T.T.; Dames, J.F.; Rose, P.D. The role of a plant/fungal consortium in the degradation of bituminous hard coal. Biodegradation 2011, 22, 129–141. [Google Scholar] [CrossRef]
- Sekhohola, L.M.; Igbinigie, E.E.; Cowan, A.K. Biological degradation and solubilisation of coal. Biodegrad 2013, 24, 305–318. [Google Scholar] [CrossRef]
- Sekhohola, L.M.; Cowan, A.K. Biological conversion of low-grade coal discard to a humic substance-enriched soil-like material. Int. J. Coal Sci. Technol. 2017, 4, 183–190. [Google Scholar] [CrossRef]
- Amir, S.; Hafidi, M.; Lemee, L.; Merlina, G.; Guiresse, M.; Pinelli, E.; Revel, J.C.; Bailly, J.R.; Ambles, A. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography–mass spectrometry. Proc. Biochem. 2006, 41, 410–422. [Google Scholar] [CrossRef]
- Iglesias, M.J.; del Río, J.C.; Laggoun-Défarge, F.; Cuesta, M.J.; SuárezRuiz, I. Control of the chemical structure of perhydrous coals. FTIR and Py-GC/MS investigations. J. Anal. Appl. Pyrolysis 2002, 62, 1–34. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Analytical chemistry of freshwater humic substances. Anal. Chim. Acta 2004, 527, 105–124. [Google Scholar] [CrossRef]
- Martin, F.; González-Vila, F.J.; del Rio, J.C.; Verdejo, T. Pyrolysis derivatization of humic substances. 1. Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 1994, 28, 71–80. [Google Scholar] [CrossRef]
- Lehtonen, T.; Peuravuori, J.; Pihlaja, K. Characterisation of lake-aquatic humic matter isolated with two different sorbing solid techniques: Tetramethylammonium hydroxide treatment and pyrolysis-gas chromatography/mass spectrometry. Anal. Chim. Acta 2000, 424, 91–103. [Google Scholar] [CrossRef]
- Lehtonen, T.; Peuravuori, J.; Pihlaja, K. Degradation of TMAH treated aquatic humic matter at different temperatures. J. Anal. Appl. Pyrolysis 2000, 55, 151–160. [Google Scholar] [CrossRef]
- Fabbri, D.; Vassura, I.; Snape, C.E. Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals. J. Chromatogr. A 2002, 967, 235–242. [Google Scholar] [CrossRef]
- Lo, H.B.; Cardott, B.J. Detection of natural weathering of Upper McAlester coal and Woodford Shale, Oklahoma, U.S.A. Org. Geochem. 1995, 22, 73–83. [Google Scholar] [CrossRef]
- Pinetown, K.L.; Ward, C.R.; van der Westhuizen, W.A. Quantitative evaluation of minerals in coal deposits in the Witbank and Highveld Coalfields, and the potential impact on acid mine drainage. Int. J. Coal Geol. 2007, 70, 166–183. [Google Scholar] [CrossRef]
- Hofrichter, M.; Fritsche, W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Appl. Microbiol. Biotechnol. 1997, 47, 419–424. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in Petroleum Systems and Earth History, 2nd ed.; University Press: Cambridge, UK, 2005. [Google Scholar]
- Tarozo, R.; Frena, M.; Madureira, L.A.S. Geochemical markers as a tool to assess sedimentary organic matter sources of the Laguna Estuarine System, South Brazil: Aliphatic and polycyclic aromatic hydrocarbons. J. Braz. Chem. Soc. 2010, 21, 2308–2318. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press, Inc.: Boca Raton, FL, USA, 1984. [Google Scholar]
- Basta, N.T.; Ryan, J.A.; Chaney, R.L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Dang, Z.; Liu, C.; Haigh, M.J. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ. Pollut. 2002, 118, 419–426. [Google Scholar] [CrossRef]
- Canellas, L.P.; Dobbss, L.B.; Oliveira, A.L.; Chagas, J.G.; Aguiar, N.O.; Rumjanek, V.M.; Novotny, E.H.; Olivares, F.L.; Spaccini, R.; Piccolo, A. Chemical properties of humic matter as related to induction of plant lateral roots. Eur. J. Soil Sci. 2012, 63, 315–324. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Breugel, Y.; Cowan, A.K.; Tsikos, H. Geochemical Study of Weathered Coal, a Co-Substrate for Bioremediation of South African Coal Discard Dumps. Minerals 2019, 9, 772. https://doi.org/10.3390/min9120772
van Breugel Y, Cowan AK, Tsikos H. Geochemical Study of Weathered Coal, a Co-Substrate for Bioremediation of South African Coal Discard Dumps. Minerals. 2019; 9(12):772. https://doi.org/10.3390/min9120772
Chicago/Turabian Stylevan Breugel, Yvonne, Ashton Keith Cowan, and Harilaos Tsikos. 2019. "Geochemical Study of Weathered Coal, a Co-Substrate for Bioremediation of South African Coal Discard Dumps" Minerals 9, no. 12: 772. https://doi.org/10.3390/min9120772
APA Stylevan Breugel, Y., Cowan, A. K., & Tsikos, H. (2019). Geochemical Study of Weathered Coal, a Co-Substrate for Bioremediation of South African Coal Discard Dumps. Minerals, 9(12), 772. https://doi.org/10.3390/min9120772