Geochemical Fractions of the Agricultural Soils of Southern Poland and the Assessment of the Potentially Harmful Element Mobility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Preparation
2.3. Sample Analyses
2.4. Quality Control
2.5. Statistical Analysis
2.6. Soil Quality
2.7. Fractionation Indices
3. Results and Discussion
3.1. Physico-Chemical Characteristics of Soils
3.2. Soil Quality
3.3. Assessment of Potential Bioavailable Forms of PHEs
3.3.1. Multi-Stage Sequential Extraction: BCR Binding Forms of Soils
3.3.2. One-Step Extraction
3.3.3. Comparison of the Results Achieved by the Extraction Methods Applied
3.4. Principal Component Analysis (PCA) Analyses
3.5. Geochemical Fractionation Indices
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bini, C.; Bech, J. PHEs, Environment and Human Health: Potentially Harmful Elements in the Environment and the Impact on Human Health; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Sparks, D.L. Toxic metals in the environment: The role of surface. Elements 2005, 1, 193–196. [Google Scholar] [CrossRef]
- Skalnaya, M.G.; Skalny, A.V. Essential Trace Elements in Human Health: A Physician’s View; Publishing House of Tomsk State University: Tomsk, Russia, 2018. [Google Scholar]
- Antibachi, D.; Kelepertzis, E.; Kelepertsis, A. Heavy metals in agricultural soils of the Mouriki-Thiva area (Central Greece) and environmental impact implications. Soil Sediment. Contam. 2012, 21, 434–450. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in the Terrestrial Environment: Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotox. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Sofianska, E.; Michailidis, K. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece. Environ. Monit. Assess. 2015, 187, 101. [Google Scholar] [CrossRef] [PubMed]
- Sungur, A.; Soylak, M.; Yilmaz, E.; Yilmaz, S.; Ozcan, H. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: The relationship between soil properties and heavy metal fractions. Soil Sediment Contam. 2015, 24, 1–15. [Google Scholar] [CrossRef]
- Shang, W.; Tang, Q.; Zheng, L.; Cheng, H. Chemical forms of heavy metals in agricultural soils affected by coal mining in the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China. Environ. Sci. Pollut. R. 2016, 23, 23683–23693. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Da Silva, F.B.V.; Nascimento, C.W.A.; Araújo, P.R.M.; da Silva, F.L.; Lima, L.H.V. Soil contamination by metals with high ecological risk in urban and rural areas. Int. J. Environ. Sci. Technol. 2017, 14, 553–562. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotox. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef]
- El-Radaideh, N.M.; Al-Kareem Al-Taani, A.A. Geo-environmental study of heavy metals of the agricultural highway soils, NW Jordan. Arab. J. Geosci. 2018, 11, 787. [Google Scholar] [CrossRef]
- Cai, L.M.; Wang, Q.S.; Wen, H.H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotox. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, A.; Kumar, V. Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geol. Ecol. Landsc. 2019, 1–17. [Google Scholar] [CrossRef]
- Gruszecka-Kosowska, A.; Baran, A.; Wdowin, M.; Mazur-Kajta, K.; Czech, T. The contents of the Potentially Harmful Elements in the arable soils of southern Poland, with the assessment of ecological and health risks: A case study. Environ. Geochem. Health 2019, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Held, A.; Linsinger, T.P.J.; Perez, A.; Ricci, M. Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of the certified reference material. Trends Anal. Chem. 2017, 8, 34–40. [Google Scholar] [CrossRef]
- Milićević, T.; Relić, R.; Škrivanj, S.; Tesić, Ž.; Popović, A. Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion. Chemosphere 2017, 171, 284–293. [Google Scholar] [CrossRef]
- Meers, E.; Samson, R.; Tack, F.M.G.; Ruttens, A.; Vangegehuchte, M.; Vangronsveld, J.; Verloo, M.G. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot. 2007, 60, 385–396. [Google Scholar] [CrossRef]
- Harmsen, J. Measuring bioavailability: From a scientific approach to standard methods. J. Environ. Qual. 2007, 36, 1420–1428. [Google Scholar] [CrossRef]
- Harmsen, J. Soil Quality—Requirements and Guidance for the Selection and Application of Methods for the Assessment of Bioavailability of Contaminants in Soil and Soil Materials; Werkgroep ISO/DIS17402 Soil Quality: Geneva, Switzerland, 2008. [Google Scholar]
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Nemati, K.; Bakar, N.K.A.; Abas, M.R. Investigations of heavy metals mobility in shrimp aquaculture sludge—Comparison of two sequential extraction procedures. Microchem. J. 2009, 91, 227–231. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe. Geoderma 2014, 228, 152–159. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Rauret, G. Extraction procedures for the determination of heavy metals in contaminated soil and sediments. Talanta 1998, 46, 449–455. [Google Scholar] [CrossRef]
- Labaz, B.; Kabala, C.; Waroszewski, J. Ambient geochemical baselines for trace elements in Chernozems—Approximation of geochemical soil transformation in an agricultural area. Environ. Monit. Assess. 2019, 191, 19. [Google Scholar]
- EPA. Method 6020B: Inductively Coupled Plasma—Mass Spectrometry. Revision 2; USEPA: Washington, DC, USA, 1998.
- PN-EN ISO 17294-2:2006. Water Quality—Use of Inductively Induced Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of 62 Elements; Polish Committee for Standardization: Warsaw, Poland, 2006.
- Quevauviller, P.; Rauret, G.; Lopez-Sanchez, J.F.; Rubio, R.; Ure, A.; Muntau, H. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three step sequential extraction procedure. Sci. Total Environ. 1997, 205, 223–234. [Google Scholar] [CrossRef]
- Pueyo, M.; López-Sánchez, J.F.; Rauret, G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta 2004, 504, 217–226. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, K.; Klimkowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health 2018, 40, 2325–2342. [Google Scholar] [CrossRef]
- PN-EN ISO 17294-1:2007. Water Quality—Induced Plasma Mass Spectrometry (ICP-MS)—Part 1: General Guidelines; Polish Committee for Standardization: Warsaw, Poland, 2007.
- PN-EN ISO 11885:2009. Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); Polish Committee for Standardization: Warsaw, Poland, 2009.
- Barona, A.; Aranguiz, I.; Elías, A. Assessment of metal extraction, distribution and contamination in surface soils by a 3-step sequential extraction procedure. Chemosphere 1999, 39, 1911–1922. [Google Scholar] [CrossRef]
- Saeedi, M.; Jamshidi-Zanjani, A. Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol. Indic. 2015, 58, 235–243. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 1 September 2016 on the conduct of the assessment of contamination of the surface of the earth. J. Laws 2016, 1396, 1–86.
- Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. Updated 7.0. In Canadian Environmental Quality Guidelines, 1999; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2007.
- Gasparatos, D.; Mavromati, G.; Kotsovilis, P.; Massas, I. Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: A residential, agricultural, and industrial area in Greece. Environ. Earth Sci. 2015, 74, 1099–1108. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A. Chemical fractionation and mobility of heavy metals in soils in the vicinity of asphalt plants in Delta State, Nigeria. Environ. Forensics 2013, 14, 248–259. [Google Scholar] [CrossRef]
- Singh, K.P.; Mohan, D.; Singh, V.K.; Malik, A. Studies on distribution and fractionation of heavy metals in Gomti river sediments—A tributary of the Ganges, India. J. Hydrol. 2005, 312, 14–27. [Google Scholar] [CrossRef]
- Naji, A.; Ismail, A.; Ismail, A.R. Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia. Microchem. J. 2010, 95, 285–292. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J. Calculating pollution indices by heavy metals in ecological geochemistry assessment and as case study in parks of Beijing. J. China Univ. Geosci. 2008, 19, 230–241. [Google Scholar]
- Chai, L.; Li, H.; Yang, Z.; Min, X.; Liao, Q.; Liu, Y.; Men, S.; Yan, Y.; Xu, J. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environ. Sci. Pollut. R. 2017, 24, 874–885. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhuang, W.; Yuan, Y.; Jiao, K.; Wang, M.; Chen, Q. Calculation of thallium’s toxicity coefficient in the evaluation of potential ecological risk index: A case study. Chemosphere 2018, 194, 562–569. [Google Scholar] [CrossRef]
- Wang, N.; Wang, A.; Kong, L.; He, M. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610, 167–174. [Google Scholar] [CrossRef]
- Chemical Monitoring of Arable Soils IUNG Institute of Soil Science and Plant Cultivation in Puławy, Main Inspectorate of Environmental Protection. 2017. Available online: http://www.gios.gov.pl/chemizm_gleb/index.php?mod=monit (accessed on 19 September 2012).
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Pająk, M.; Błońska, E.; Szostak, M.; Gąsiorek, M.; Pietrzykowski, M.; Urban, O.; Derbis, P. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Poll. 2018, 229, 392. [Google Scholar] [CrossRef] [PubMed]
- Piekut, A.; Baranowska, R.; Marchwińska-Wyrwał, E.; Ćwieląg-Drabek, M.; Hajok, I.; Dziubanek, G.; Grochowska-Niedworok, E. Is the soil quality monitoring an effective tool in consumers’ protection of agricultural crops from cadmium soil contamination?—A case of the Śląskie region (Poland). Environ. Monit. Assess. 2018, 190, 25. [Google Scholar] [CrossRef] [PubMed]
- Waroszewski, J.; Sprafke, T.; Kabała, C.; Kobierski, M.; Kierczak, J.; Musztyfaga, E.; Loba, A.; Mazurek, R.; Łabaz, B. Tracking textural, mineralogical and geochemical signatures in soils developed from basalt-derived materials covered with loess sediments (SW Poland). Geoderma 2019, 337, 983–997. [Google Scholar] [CrossRef]
- Krzaklewski, W.; Barszcz, J.; Małek, S.; Kozioł, K.; Pietrzykowski, M. Contamination of forest soils in the vicinity of the sedimentation pond after zinc and lead ore flotation (in the region of Olkusz, southern Poland). Water Air Soil Poll. 2004, 159, 151–164. [Google Scholar] [CrossRef]
- Baran, A.; Czech, T.; Wieczorek, J. Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicology 2014, 2, 1234–1244. [Google Scholar]
- Baran, A.; Wieczorek, J. Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils. Arch. Environ. Prot. 2015, 41, 54–63. [Google Scholar] [CrossRef]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health. 2018, 40, 435–450. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.B.; Gąsiorek, M.; Zadrożny, P. Pollution indices as comprehensive tool for evaluation of the accumulation and provenance of potentially harmful elements in soils in Ojców National Park. J. Geochem. Explor. 2019, 201, 13–30. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kepka, W.; Tymczuk, W.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Dołęgowska, S.; Michalik, A. Geochemical anomalies of trace elements in unremediated soils of Mt. Karczówka, a historic lead mining area in the city of Kielce, Poland. Sci. Total Environ. 2018, 639, 397–405. [Google Scholar] [CrossRef]
- Lis, J.; Pasieczna, A. Geochemical Atlas of Kraków and Environs, 1:100,000; Państwowy Instytut Geologiczny: Warszawa, Poland, 1995. [Google Scholar]
- Lis, J.; Pasieczna, A. Geochemical Atlas of Upper Silesia, 1:100,000; Państwowy Instytut Geologiczny: Warszawa, Poland, 1995. [Google Scholar]
- Pasieczna, A.; Fajfer, J.; Strzemińska, K. Szczegółowa mapa geochemiczna Górnego Śląska w skali 1:25 000 Arkusz Zabrze M-34-62-B-a: Detailed Geochemical Map of Upper Silesia in the Scale of 1:25,000 Zabrze sheet M-34-62-B-a; Państwowy Instytut Geologiczny: Warszawa, Poland, 2016. [Google Scholar]
- Pinto, E.; Almeida, A.A.; Ferreira, I.M.P.L.V.O. Assessment of metal(loid)s phytoavailability in intensive agricultural soils by the application of single extractions to rhizosphere soil. Ecotox. Environ. Saf. 2015, 113, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Tao, L.; Liu, X.; Hou, J.; Wang, A.; Li, R. Heavy metals speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J. Geochem. Explor. 2013, 132, 156–163. [Google Scholar] [CrossRef]
- Lei, M.; Zhang, Y.; Khan, S.; Qin, P.F.; Liao, B.H. Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environ. Monit. Assess. 2010, 168, 215–222. [Google Scholar] [CrossRef] [PubMed]
Index | Formula | Explanations | Limit Values | Classification | Reference |
---|---|---|---|---|---|
Single Indices | |||||
Mobility factor MF | MF = × 100% | BCRF1–BCRF4—content of single PHE in each fraction in % according to the BCR procedure | No limit values | The higher MF value the higher PHE mobility | [40,41] |
Risk assessment code RAC | content of BCRF1 | BCRF1—content of single PHE in exchangeable and carbonate fractions in % | %BCRF1 < 1 | No risk | [42] |
1 < %BCRF1 < 10 | Low risk | ||||
11 < %BCRF1 < 30 | Medium risk | ||||
31 < %BCRF1 < 50 | High risk | ||||
%BCRF1 > 50 | Very high risk | ||||
Individual contamination factor ICF | ICF = | PMF—content in potential mobile fractions (BCRF1–BCRF3) according to the BCR procedure | No limit values | The higher value the higher ecological risk | [43] |
Complex Indices | |||||
Modified risk assessment codem RAC | mRAC = | RACi—percentage of each PHE in potential mobile fractions; Tri—toxic response of the PHE; n—number of PHEs | mRAC < 1 | No potential of adverse effect | [37,44,45,46,47,48] |
1 ≤ mRAC < 10 | Low potential of adverse effect | ||||
10 ≤ mRAC < 30 | Medium potential of adverse effect | ||||
30 ≤ mRAC < 50 | High potential of adverse effect | ||||
mRAC ≥ 50 | Very high potential of adverse effect | ||||
Global contamination factor GCF | GCF = Σ ICF | ICF—individual contamination factor of single PHE | No limit values | The higher value the higher ecological risk | [36,43] |
PHEs Mean (mg/kg) | Reagent | Opolskie (n = 4) | Śląskie (n = 4) | Małopolskie (n = 12) | Świętokrzyskie (n = 6) | Podkarpackie (n = 4) |
---|---|---|---|---|---|---|
Cd | CaCl2 | 0.05 | 0.06 | 0.05 | 0.08 | 0.03 |
Na2EDTA * | 0.36 | 2.48 | 0.37 | 0.23 | 0.17 | |
BCRF1 | 0.32 | 0.69 | 0.67 | 0.38 | 0.2 | |
Cr | CaCl2 * | 0.023 | <LOD | 0.003 | 0.003 | <LOD |
Na2EDTA * | 0.64 | 0.25 | 0.20 | 0.15 | 0.13 | |
BCRF1 | 0.09 | 0.26 | <LOD | <LOD | <LOD | |
Cu | CaCl2 * | 0.27 | 0.01 | 0.01 | 0.01 | 0.01 |
Na2EDTA * | 11.3 | 4.75 | 3.29 | 1.18 | 1.73 | |
BCRF1 | 0.81 | 1.39 | 0.56 | 0.5 | 0.35 | |
Ni | CaCl2 | 0.12 | 0.03 | 0.05 | 0.31 | 0.04 |
Na2EDTA | 2.00 | 0.76 | 1.75 | 1.38 | 0.54 | |
BCRF1 | 1.19 | 0.08 | 0.3 | 1.02 | 0.58 | |
Pb | CaCl2 * | 0.22 | 0.04 | 0.05 | 0.05 | 0.04 |
Na2EDTA | 15.5 | 70.9 | 9.32 | 6.25 | 4.68 | |
BCRF1 | <LOD | <LOD | <LOD | <LOD | <LOD | |
Zn | CaCl2 | 1.32 | 0.79 | 1.34 | 1.30 | 2.08 |
Na2EDTA | 51.7 | 95.6 | 13.8 | 5.49 | 34.9 | |
BCRF1 | 72.5 | 131 | 44.8 | 9.2 | 60.8 |
CaCl2 | Na2EDTA | BCRF1 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | Cd | Cr | Cu | Ni | Pb | Zn | Cd | Cr | Cu | Ni | Pb | Zn | ||
CaCl2 | Cd | 1.00 | |||||||||||||||||
Cr | 0.17 | 1.00 | |||||||||||||||||
Cu | 0.24 | 0.69 | 1.00 | ||||||||||||||||
Ni | 0.59 | 0.53 | 0.50 | 1.00 | |||||||||||||||
Pb | 0.35 | 0.73 | 0.84 | 0.59 | 1.00 | ||||||||||||||
Zn | 0.69 | 0.25 | 0.42 | 0.62 | 0.53 | 1.00 | |||||||||||||
Na2EDTA | Cd | 0.12 | 0.10 | 0.14 | −0.15 | −0.09 | −0.30 | 1.00 | |||||||||||
Cr | −0.13 | 0.55 | 0.50 | 0.00 | 0.27 | −0.22 | 0.66 | 1.00 | |||||||||||
Cu | −0.23 | 0.18 | 0.25 | −0.26 | −0.07 | −0.34 | 0.79 | 0.80 | 1.00 | ||||||||||
Ni | −0.32 | 0.33 | 0.07 | 0.01 | −0.08 | −0.51 | 0.51 | 0.59 | 0.44 | 1.00 | |||||||||
Pb | 0.08 | 0.20 | 0.30 | −0.15 | 0.06 | −0.22 | 0.87 | 0.76 | 0.84 | 0.30 | 1.00 | ||||||||
Zn | −0.12 | 0.04 | 0.27 | −0.28 | 0.07 | −0.08 | 0.63 | 0.62 | 0.82 | 0.12 | 0.72 | 1.00 | |||||||
BCRF1 | Cd | 0.52 | −0.20 | 0.04 | 0.06 | −0.01 | 0.16 | 0.46 | −0.06 | 0.12 | −0.24 | 0.38 | 0.19 | 1.00 | |||||
Cr | 0.14 | 0.67 | 0.53 | 0.46 | 0.62 | 0.27 | 0.05 | 0.43 | 0.21 | 0.07 | 0.15 | 0.23 | −0.02 | 1.00 | |||||
Cu | 0.27 | 0.27 | 0.40 | 0.38 | 0.28 | 0.38 | 0.32 | 0.31 | 0.43 | −0.10 | 0.43 | 0.36 | 0.41 | 0.47 | 1.00 | ||||
Ni | −0.05 | 0.18 | −0.09 | 0.33 | −0.06 | −0.17 | −0.04 | −0.07 | −0.14 | 0.51 | −0.29 | −0.39 | 0.05 | 0.15 | −0.00 | 1.00 | |||
Pb | 0.43 | 0.09 | 0.38 | 0.13 | 0.24 | 0.28 | 0.45 | 0.28 | 0.39 | −0.33 | 0.67 | 0.50 | 0.52 | 0.13 | 0.59 | −0.56 | 1.00 | ||
Zn | 0.19 | −0.06 | 0.31 | −0.07 | 0.17 | 0.26 | 0.37 | 0.27 | 0.51 | −0.33 | 0.51 | 0.83 | 0.43 | 0.28 | 0.52 | −0.44 | 0.70 | 1.00 |
Variables | Opolskie | Śląskie | Małopolskie | Świętokrzyskie | Podkarpackie | |||||
---|---|---|---|---|---|---|---|---|---|---|
PCA1 | PCA2 | PCA1 | PCA2 | PCA1 | PCA2 | PCA1 | PCA2 | PCA1 | PCA2 | |
pHKCl | −0.99. | 0.04 | 0.41 | 0.86 | −0.92 | −0.05 | −0.88 | −0.09 | 0.79 | −0.46 |
clay | 0.79 | 0.61 | −0.89 | 0.41 | −0.49 | 0.01 | −0.69 | 0.13 | 0.48 | −0.87 |
Corg | 0.86 | −0.10 | 0.95 | −0.19 | 0.12 | 0.48 | −0.82 | 0.51 | 0.83 | −0.44 |
Cd | 0.30 | −0.77 | 0.83 | 0.31 | −0.34 | −0.17 | 0.88 | −0.28 | 0.50 | −0.64 |
Cr | −0.08 | 0.96 | −0.38 | −0.78 | 0.18 | −0.28 | −0.50 | −0.56 | 0.02 | −0.99 |
Cu | −0.02 | 0.99 | 0.51 | −0.86 | −0.55 | 0.54 | 0.73 | 0.05 | 0.91 | 0.33 |
Ni | 0.58 | 0.81 | −0.80 | −0.38 | 0.48 | −0.30 | 0.84 | 0.08 | 0.98 | 0.06 |
Pb | 0.56 | −0.12 | 0.95 | 0.27 | 0.35 | −0.03 | −0.22 | 0.90 | 0.19 | 0.81 |
Zn | 0.01 | 1.00 | −0.16 | −0.98 | −0.49 | −0.29 | −0.24 | 0.94 | 0.05 | 0.86 |
Cd CaCl2 | −0.54 | −0.49 | −0.28 | −0.96 | 0.71 | −0.19 | 0.95 | −0.21 | −0.93 | 0.25 |
Cr CaCl2 | 0.93 | −0.13 | - | - | 0.72 | 0.16 | 0.94 | −0.12 | - | - |
Cu CaCl2 | 0.06 | 0.98 | 0.86 | 0.27 | 0.90 | −0.02 | 0.86 | 0.05 | 0.79 | 0.38 |
Ni CaCl2 | 0.82 | 0.54 | −0.74 | −0.40 | 0.92 | −0.15 | 0.90 | −0.15 | −0.06 | 0.69 |
Pb CaCl2 | −0.65 | −0.57 | 0.78 | 0.08 | 0.89 | −0.18 | 0.95 | −0.13 | 0.79 | 0.38 |
Zn CaCl2 | −0.89 | 0.03 | 0.24 | −0.97 | 0.92 | −0.29 | 0.91 | −0.08 | −0.06 | 0.96 |
Cd Na2EDTA | 0.92 | −0.40 | 0.93 | −0.30 | −0.12 | 0.96 | 0.85 | 0.45 | 0.77 | 0.17 |
Cr Na2EDTA | 0.95 | −0.09 | 0.43 | 0.85 | 0.05 | 0.67 | 0.88 | 0.34 | 0.96 | −0.27 |
Cu Na2EDTA | 0.94 | 0.33 | 0.63 | 0.70 | −0.12 | 0.97 | 0.14 | 0.50 | 1.00 | −0.07 |
Ni Na2EDTA | 1.00 | 0.06 | −0.47 | 0.88 | −0.20 | 0.87 | 0.92 | 0.08 | 0.98 | −0.11 |
Pb Na2EDTA | 0.07 | −0.90 | 0.73 | −0.68 | 0.06 | 0.83 | −0.16 | 0.80 | 0.97 | −0.23 |
Zn Na2EDTA | 0.06 | 0.77 | 0.91 | 0.27 | −0.14 | 0.78 | 0.45 | 0.82 | 0.99 | −0.09 |
Total variance % | 50.1 | 34.9 | 51.1 | 38.2 | 35.1 | 21.9 | 56.9 | 20.7 | 57.2 | 28.6 |
Cumulative variance % | 50.1 | 85.1 | 51.1 | 89.3 | 35.1 | 56.9 | 56.9 | 77.6 | 57.2 | 85.8 |
MF | Opolskie (n = 4) | Śląskie (n = 4) | Małopolskie (n = 12) | Świętokrzyskie (n = 6) | Podkarpackie (n = 4) |
---|---|---|---|---|---|
As | 8.26 | 4.76 | 0.99 | 0.99 | 1.96 |
Cd | 31.1 | 30.6 | 31.5 | 32.0 | 36.7 |
Co | 13.8 | 9.09 | 8.26 | 9.09 | 9.91 |
Cr | 0.99 | 0.99 | 0.00 | 0.00 | 0.00 |
Cu | 6.54 | 1.96 | 1.96 | 2.91 | 3.85 |
Ni | 6.42 | 0.39 | 7.18 | 6.30 | 3.85 |
Pb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Sb | 2.91 | 2.91 | 2.91 | 4.76 | 4.76 |
Tl | 6.54 | 2.91 | 3.85 | 1.96 | 2.91 |
Zn | 31.0 | 23.7 | 9.09 | 13.0 | 37.1 |
RAC | Opolskie (n = 4) | Śląskie (n = 4) | Małopolskie (n = 12) | Świętokrzyskie (n = 6) | Podkarpackie (n = 4) |
---|---|---|---|---|---|
As | low | low | low | low | low |
Cd | high | high | high | high | very high |
Co | medium | low | low | low | medium |
Cr | low | low | no risk | no risk | no risk |
Cu | low | low | low | low | low |
Ni | low | low | low | low | low |
Pb | no risk | no risk | no risk | no risk | no risk |
Sb | low | low | low | low | low |
Tl | low | low | low | low | low |
Zn | high | high | low | medium | very high |
mRAC | medium potential of adverse effect | medium potential of adverse effect | medium potential of adverse effect | medium potential of adverse effect | medium potential of adverse effect |
ICF | Opolskie (n = 4) | Śląskie (n = 4) | Małopolskie (n = 12) | Świętokrzyskie (n = 6) | Podkarpackie (n = 4) |
---|---|---|---|---|---|
As | 1.00 | 1.00 | 0.59 | 0.47 | 0.72 |
Cd | 32.3 | 19.0 | 9.00 | 24.0 | 49.0 |
Co | 1.13 | 1.22 | 1.44 | 3.00 | 1.44 |
Cr | 0.64 | 0.35 | 0.72 | 0.35 | 0.49 |
Cu | 4.56 | 0.82 | 0.79 | 1.00 | 2.23 |
Ni | 1.70 | 0.89 | 0.89 | 1.17 | 1.04 |
Pb | 49.0 | 3.00 | 1.59 | 3.76 | 15.7 |
Sb | 4.88 | 1.94 | 3.17 | 3.00 | 7.33 |
Tl | 2.70 | 0.75 | 0.32 | 1.22 | 1.04 |
Zn | 7.17 | 2.16 | 0.52 | 0.79 | 6.14 |
GCF | 105 | 31.1 | 19.0 | 38.8 | 85.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszecka-Kosowska, A.; Baran, A.; Mazur-Kajta, K.; Czech, T. Geochemical Fractions of the Agricultural Soils of Southern Poland and the Assessment of the Potentially Harmful Element Mobility. Minerals 2019, 9, 674. https://doi.org/10.3390/min9110674
Gruszecka-Kosowska A, Baran A, Mazur-Kajta K, Czech T. Geochemical Fractions of the Agricultural Soils of Southern Poland and the Assessment of the Potentially Harmful Element Mobility. Minerals. 2019; 9(11):674. https://doi.org/10.3390/min9110674
Chicago/Turabian StyleGruszecka-Kosowska, Agnieszka, Agnieszka Baran, Katarzyna Mazur-Kajta, and Tomasz Czech. 2019. "Geochemical Fractions of the Agricultural Soils of Southern Poland and the Assessment of the Potentially Harmful Element Mobility" Minerals 9, no. 11: 674. https://doi.org/10.3390/min9110674
APA StyleGruszecka-Kosowska, A., Baran, A., Mazur-Kajta, K., & Czech, T. (2019). Geochemical Fractions of the Agricultural Soils of Southern Poland and the Assessment of the Potentially Harmful Element Mobility. Minerals, 9(11), 674. https://doi.org/10.3390/min9110674