Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation, Characterization and Analytical Methods
2.2. Experimental Apparatus and Conditions
2.2.1. Thermal Activation
2.2.2. Dissolution in Aqueous Carbonation Conditions
3. Results and Discussion
3.1. Mass Loss
3.2. Mineralogical Transformations Along with Activation Temperatures
3.3. Impact of Mineralogy on Dissolution
3.3.1. Two Batches Dissolution
3.3.2. Successive Batches Dissolution
3.4. Mineralogical Assemblage and Carbonation
4. Conclusions
- (i)
- It is possible to differentiate and quantify intermediate amorphous phases and metaserpentine formed during dehydroxylation of serpentine and correlate these values to the efficiency of carbonation reaction. In a static furnace, treatment at 750 °C for 15 min leads to the formation of 27.2 g/100 g of starting material of meta-serpentine.
- (ii)
- Thermally produced amorphous phases enhance Mg2+ solubility during carbonation reaction. Furthermore, the formation of meta-serpentine, resulting in a complete dehydroxylation, significantly upgrades Mg2+ leaching yield.
- (iii)
- The crystallization of forsterite decreases the sample dissolution potential by limiting the amount of Mg2+ accessible for leaching in the present dissolution conditions.
- (iv)
- Adjusting thermal activations parameters (temperature and residence time) led to an increase of 39% of Mg2+ leached during the carbonation reaction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Lackner, K.S.; Wendt, C.H.; Butt, D.P.; Joyce, B.L.; Sharp, D.H. Carbon dioxide disposal in carbonate minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Seifritz, W. CO2 disposal by means of silicates. Nature 1990, 345, 486. [Google Scholar] [CrossRef]
- Maroto-Valer, M.M.; Fauth, D.J.; Kuchta, M.E.; Zhang, Y.; Andrésen, J.M. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process. Technol. 2005, 86, 1627–1645. [Google Scholar] [CrossRef]
- Hänchen, M.; Prigiobbe, V.; Baciocchi, R.; Mazzotti, M. Precipitation in the Mg-carbonate system: Effects of temperature and CO2 pressure. Chem. Eng. Sci. 2008, 63, 1012–1028. [Google Scholar] [CrossRef]
- Harrison, A.L.; Power, I.M.; Dipple, G.M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 2012, 47, 126–134. [Google Scholar] [CrossRef]
- Page, N.J. Chemical differences among the serpentine polymorphs. Am. Mineral. 1968, 53, 201–215. [Google Scholar]
- Goff, F.; Guthrie, G.D.; Lipin, B.; Fite, M.; Chipera, S.; Counce, D.A.; Kluk, E.; Ziock, H. Evaluation of Ultramafic Deposits in the Eastern United States and Puerto Rico as Sources of Magnesium for Carbon Sequestration; Los Alamos National Laboratory: Los Alamos, NM, USA, 2000; p. 30. [Google Scholar]
- Nagamori, M.; Plumpton, A.J.; Le Houillier, R. Activation of magnesia in serpentine by calcination and the chemical utilization of asbestos tailings, A review. C. Bull. 1980, 73, 144–156. [Google Scholar]
- Luce, R.W.; Bartlett, R.W.; Parks, G.A. Dissolution kinetics of magnesium silicates. Geochim. Cosmochim. Acta 1972, 36, 35–50. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters; John Wiley and Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Aruja, E. An X-ray study of crystal-structure of antigorite. Mineral. Mag. 1994, 27, 11. [Google Scholar]
- Nagy, B.; Faust, G. Serpentines: Natural mixtures of Chrysotile and antigorite. Am. Mineral. 1956, 41, 817–838. [Google Scholar]
- Wicks, F.J.; Whittaker, E.J.W. Serpentine textures and serpentinization. Can. Mineral. 1977, 15, 459–488. [Google Scholar]
- Larachi, F.; Daldoul, I.; Beaudoin, G. Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations. Geochim. Cosmochim. Acta 2010, 74, 3051–3075. [Google Scholar] [CrossRef]
- Mellini, M.; Zanazzi, P.F. Crystal structures of lizardite-1T and lizardite-2H1 from Coli, Italy. Am. Mineral. 1987, 72, 943–948. [Google Scholar]
- Turci, F.; Tomatis, M.; Mantegna, S.; Cravotto, G.; Fubini, B. A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound. Ultrason. Sonochem. 2008, 15, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.C.; Taylor, H.F.W. The dehydration of chrysotile in air and under hydrothermal conditions. Mineral. Mag. 1963, 33, 467–482. [Google Scholar] [CrossRef]
- Brindley, G.W.; Hayami, R. Mechanism of formation of forsterite and enstatite from serpentine. Mineral. Mag. 1965, 35, 189–195. [Google Scholar] [CrossRef]
- Brindley, G.W.; Hayami, R. Kinetics and mecanisms of dehydration and recrystallization of serpentine. Clays Clay Miner. 1965, 12, 35–37. [Google Scholar] [CrossRef]
- McKelvy, M.J.; Chizmeshya, A.V.; Diefenbacher, J.; Béarat, H.; Wolf, G. Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Environ. Sci. Technol. 2004, 38, 6897–6903. [Google Scholar] [CrossRef]
- Li, W.; Li, W.; Li, B.; Bai, Z. Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation. Chem. Eng. Res. Des. 2009, 87, 210–215. [Google Scholar] [CrossRef]
- Farhang, F.; Rayson, M.; Brent, G.; Hodgins, T.; Stockenhuber, M.; Kennedy, E. Insights into the dissolution kinetics of thermally activated serpentine for CO2 sequestration. Chem. Eng. J. 2017, 330, 1174–1186. [Google Scholar] [CrossRef]
- Gerdemann, S.J.; O’Connor, W.K.; Dahlin, D.C.; Penner, L.R.; Rush, H. Ex situ aqueous mineral carbonation. Environ. Sci. Technol. 2007, 41, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, W.K.; Dahlin, D.C.; Rush, G.E.; Gedermann, S.J.; Penner, L.R.; Nilsen, D.N. Aqueous Mineral Carbonation; Final Report DOE/ARC-TR-04-002. 2005, p. 462. Available online: https://www.researchgate.net/profile/William_Oconnor8/publication/315844800_Aqueous_Mineral_Carbonation_Mineral_Availability_Pretreatment_Reaction_Parametrics_and_Process_Studies/links/58ebb247a6fdcc965767765f/Aqueous-Mineral-Carbonation-Mineral-Availability-Pretreatment-Reaction-Parametrics-and-Process-Studies.pdf (accessed on 3 November 2019).
- Gerdemann, S.J.; Dahlin, D.C.; O’Connor, W.K.; Penner, L.R. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In Greenhouse gas Technologies; Albany Research Center (ARC): Albany, OR, USA, 2003; p. 8. [Google Scholar]
- Mann, J. Serpentine Activation for CO2 Sequestration. Ph.D. Thesis, University of Sydney, Sydney, Australia, 2014; p. 274. [Google Scholar]
- Sanna, A.; Wang, X.; Lacinska, A.; Styles, M.; Paulson, T.; Maroto-Valer, M.M. Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration. Miner. Eng. 2013, 49, 135–144. [Google Scholar] [CrossRef]
- Mercier, G.; Blais, J.-F.; Cecchi, E.; Veetil, S.P.; Pasquier, L.-C.; Kentish, S. Carbon Dioxide Chemical Sequestration from Industrial Emissions by Carbonation. U.S. Patent 9.440,189 B2, 13 September 2016. [Google Scholar]
- Pasquier, L.-C.; Mercier, G.; Blais, J.F.; Cecchi, E.; Kentish, S. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. Environ. Sci. Technol. 2014, 48, 5163–5170. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, L.-C.; Mercier, G.; Blais, J.F.; Cecchi, E.; Kentish, S. Parameters optimization for direct flue gas CO2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residues. Appl. Geochem. 2014, 50, 66–73. [Google Scholar] [CrossRef]
- Moreno Correia, M.J. Optimisation de la Précipitation des Carbonates de Magnésium pour L’application dans un Procédé de Séquestration de CO2 par Carbonatation Minérale de la Serpentine. Master’s Thesis, Université du Québec, Québec, QC, Canada, 2018; p. 125. [Google Scholar]
- Pasquier, L.-C.; Mercier, G.; Blais, J.-F.; Cecchi, E.; Kentish, S. Technical and economic evaluation of a mineral carbonation process using southern Québec mining wastes for CO2 sequestration of raw flue gas with by-product recovery. Int. J. Greenh. Gas Control 2016, 50, 147–157. [Google Scholar] [CrossRef]
- Kemache, N.; Pasquier, L.-C.; Cecchi, E.; Mouedhen, I.; Blais, J.-F.; Mercier, G. Aqueous mineral carbonation for CO2 sequestration: From laboratory to pilot scale. Fuel Process. Technol. 2017, 166, 209–216. [Google Scholar] [CrossRef]
- Kemache, N.; Pasquier, L.-C.; Mouedhen, I.; Cecchi, E.; Blais, J.-F.; Mercier, G. Aqueous mineral carbonation of serpentinite on a pilot scale: The effect of liquid recirculation on CO2 sequestration and carbonate precipitation. Appl. Geochem. 2016, 67, 21–29. [Google Scholar] [CrossRef]
- Aumento, F. Serpentine Mineralogy of Ultrabasic Intrusion in Canada and on the Mid-Atlantic Ridge; Department of Energy, Mines and Resources: Ottawa, ON, Canada, 1970. [Google Scholar]
- Tertian, R.; Claisse, F. Principles of Quantitative X-ray Fluorescence Analysis; Wiley-Heyden: London, UK, 1982. [Google Scholar]
- Wilson, S.A.; Raudsepp, M.; Dipple, G.M. Verifying and quantifying carbon fixation in minerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data. Am. Mineral. 2006, 91, 1331–1341. [Google Scholar] [CrossRef]
- Bish, D.L.; Howard, S. Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 1988, 21, 86–91. [Google Scholar] [CrossRef]
- Pawley, G.S. Unit-Cell Refinement from Powder Diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361. [Google Scholar] [CrossRef]
- Raudsepp, M.; Pani, E.; Dipple, G. Measuring mineral abundance in skarn; I, The Rietveld method using X-ray powder-diffraction data. Can. Mineral. 1999, 37, 1–15. [Google Scholar]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Turvey, C.C.; Wilson, S.A.; Hamilton, J.L.; Southam, G. Field-based accounting of CO2 sequestration in ultramafic mine wastes using portable X-ray diffraction. Am. Mineral. 2017, 102, 1302–1310. [Google Scholar] [CrossRef]
- Scarlett, N.V.Y.; Madsen, I.C. Quantification of phases with partial or no known crystal structures. Powder Diffr. 2006, 21, 278–284. [Google Scholar] [CrossRef]
- Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 2005, 20, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Falini, G.; Foresti, E.; Gazzano, M.; Gualtieri, A.F.; Leoni, M.; Lesci, I.G.; Roveri, N. Tubular-Shaped Stoichiometric Chrysotile Nanocrystals. Chem. A Eur. J. 2004, 10, 3043–3049. [Google Scholar] [CrossRef]
- Du Breuil, C.; Pasquier, L.C.; Dipple, G.; Blais, J.F.; Iliuta, M.C.; Mercier, G. Impact of particle size in serpentine thermal treatment: Implications for serpentine dissolution in aqueous-phase using CO2 in flue gas conditions. Appl. Clay Sci. 2019, 182, 105286. [Google Scholar] [CrossRef]
- Jolicoeur, C.; Duchenes, D. Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbsestos fibers: Evidence for matrix effects. Can. J. Chem. 1981, 59, 1521–1526. [Google Scholar] [CrossRef]
- Viti, C. Serpentine minerals discrimination by thermal analysis. Am. Mineral. 2010, 95, 631–638. [Google Scholar] [CrossRef]
- Balucan, R.D.; Dlugogorski, B.Z. Thermal activation of antigorite for mineralization of CO2. Environ. Sci. Technol. 2013, 47, 182–190. [Google Scholar] [CrossRef]
- Hora, Z. Ultramafic hosted chrysotile asbestos. In Fieldwork; British Columbia Geological Survey: Victoria, BC, Canada, 1997; p. 4. [Google Scholar]
- Bodénan, F.; Bourgeois, F.; Petiot, C.; Augé, T.; Bonfils, B.; Julcour-Lebigue, C.; Guyot, F.; Boukary, A.; Tremosa, J.; Lassin, A.; et al. Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project). Miner. Eng. 2014, 59, 52–63. [Google Scholar] [CrossRef]
- Julcour, C.; Bourgeois, F.; Bonfils, B.; Benhamed, I.; Guyot, F.; Bodénan, F.; Petiot, C.; Gaucher, É.C. Development of an attrition-leaching hybrid process for direct aqueous mineral carbonation. Chem. Eng. J. 2015, 262, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Birle, J.; Gibbs, G.; Moore, P.; Smith, J. Crystal structures of natural olivines. Am. Mineral. 1968, 53, 807. [Google Scholar]
Mean Size (µm) | d90 | d50 | d10 |
---|---|---|---|
16.00 | 1.99 | 8.16 | 43.28 |
Elements | Values (wt %) |
---|---|
CaO | 0.7 |
Cr2O3 | 0.2 |
Fe2O3 | 6.8 |
K2O | 0.2 |
MgO | 41.0 |
MnO | 0.1 |
NiO | 0.3 |
SiO2 | 39.9 |
LOI | 10.8 |
Residence Time (min) | Temperature (°C) | ||
---|---|---|---|
550 | 650 | 750 | |
15 | A | C | F |
30 | - | D | G |
60 | B | E | H |
Temperature (°C) | 550 | 650 | 750 | LOI | |||||
---|---|---|---|---|---|---|---|---|---|
Residence Time (min) | 15 | 60 | 15 | 30 | 60 | 15 | 30 | 60 | |
Sample Name | A | B | C | D | E | F | G | H | |
% Mass Lost | 5.5 | 5.5 | 5.0 | 9.9 | 12.5 | 14.2 | 13.1 | 11.7 | 10.8 |
Amorphous | Serpentine | Forsterite | Magnetite | Hematite | ||
---|---|---|---|---|---|---|
Untreated | U | 39.6 | 55.8 | 0.0 | 4.4 | 0.0 |
550 °C | A (15 min) | 40.4 | 54.9 | 0.0 | 4.1 | 0.4 |
B (60 min) | 39.2 | 56.3 | 0.0 | 3.5 | 0.8 | |
650 °C | C (15 min) | 44.5 | 50.8 | 0.0 | 3.6 | 0.9 |
D (30 min) | 43.5 | 51.6 | 0.0 | 3.4 | 1.3 | |
E (60 min) | 46.9 | 46.3 | 2.4 | 2.4 | 1.8 | |
750 °C | F (15 min) | 70.1 | 19.8 | 0.0 | 6.0 | 4.1 |
G (30 min) | 67.9 | 0.0 | 28.5 | 0.0 | 3.6 | |
H (60 min) | 61.8 | 0.0 | 34.6 | 0.0 | 3.7 |
In. Serp. | Inter. Am. | Meta-Serp. | For. | Mag. | Hem. | ML | ||
---|---|---|---|---|---|---|---|---|
Untreated | U | 95.6 | 0.0 | 0.0 | 0.0 | 4.4 | 0.0 | 0.0 |
550 °C | A (15 min) | 52.8 | 36.5 | 0.0 | 0.0 | 3.9 | 0.4 | 5.5 |
B (60 min) | 53.5 | 37.0 | 0.0 | 0.0 | 3.3 | 0.8 | 5.5 | |
650 °C | C (15 min) | 54.0 | 31.9 | 4.8 | 0.0 | 3.4 | 0.9 | 5.0 |
D (30 min) | 21.6 | 60.3 | 4.0 | 0.0 | 3.0 | 1.2 | 9.8 | |
E (60 min) | 4.2 | 70.3 | 7.2 | 2.1 | 2.1 | 1.6 | 12.5 | |
750 °C | F (15 min) | 0.0 | 49.9 | 27.2 | 0.0 | 5.2 | 3.5 | 14.2 |
G (30 min) | 0.0 | 33.6 | 25.5 | 24.8 | 0.0 | 3.1 | 13.1 | |
H (60 min) | 0.0 | 34.3 | 20.3 | 30.5 | 0.0 | 3.2 | 11.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du Breuil, C.; César-Pasquier, L.; Dipple, G.; Blais, J.-F.; Iliuta, M.C.; Mercier, G. Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions. Minerals 2019, 9, 680. https://doi.org/10.3390/min9110680
Du Breuil C, César-Pasquier L, Dipple G, Blais J-F, Iliuta MC, Mercier G. Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions. Minerals. 2019; 9(11):680. https://doi.org/10.3390/min9110680
Chicago/Turabian StyleDu Breuil, Clémence, Louis César-Pasquier, Gregory Dipple, Jean-François Blais, Maria Cornelia Iliuta, and Guy Mercier. 2019. "Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions" Minerals 9, no. 11: 680. https://doi.org/10.3390/min9110680
APA StyleDu Breuil, C., César-Pasquier, L., Dipple, G., Blais, J. -F., Iliuta, M. C., & Mercier, G. (2019). Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions. Minerals, 9(11), 680. https://doi.org/10.3390/min9110680