Texture Development and Stress–Strain Partitioning in Periclase + Halite Aggregates
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Experiment Details
2.2. Experiment Data Analysis
2.3. Plasticity Modeling
3. Experiment and Modeling Results
3.1. Pure MgO and NaCl
3.2. 20% MgO + 80% NaCl
3.3. 30% MgO + 70% NaCl
3.4. 50% MgO + 50% NaCl
3.5. 80% MgO + 20% NaCl
4. Discussion
4.1. Determination of Stress and Strain
4.2. Stress and Strain of Individual Phase
4.3. Aggregates Stress
4.4. Texture Evolution with Varying Phase Proportions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaercher, P.; Miyagi, L.; Kanitpanyacharoen, W.; Zepeda-Alarcon, E.; Wang, Y.; Parkinson, D.; Lebensohn, R.A.; De Carlo, F.; Wenk, H.R. Two-phase deformation of lower mantle mineral analogs. Earth Planet. Sci. Lett. 2016, 456, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, L.; Wenk, H.R. Texture development and slip systems in bridgmanite and bridgmanite+ ferropericlase aggregates. Phys. Chem. Miner. 2016, 43, 597–613. [Google Scholar] [CrossRef]
- Handy, M.R. The solid-state flow of polymineralic rocks. J. Geophys. Res. Solid Earth 1990, 95, 8647–8661. [Google Scholar] [CrossRef]
- Handy, M.R. Flow laws for rocks containing two non-linear viscous phases: A phenomenological approach. J. Struct. Geol. 1994, 16, 287–301. [Google Scholar] [CrossRef]
- Girard, J.; Amulele, G.; Farla, R.; Mohiuddin, A.; Karato, S.I. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 2016, 351, 144–147. [Google Scholar] [CrossRef]
- Poudens, A.; Bacroix, B.; Bretheau, T. Influence of microstructures and particle concentrations on the development of extrusion textures in metal matrix composites. Mater. Sci. Eng. A 1995, 196, 219–228. [Google Scholar] [CrossRef]
- Garcés, G.; Rodríguez, M.; Perez, P.; Adeva, P. Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Mater. Sci. Eng. A 2006, 419, 357–364. [Google Scholar] [CrossRef]
- Brokmeier, H.G.; Böcker, W.; Bunge, H.J. Neutron diffraction texture analysis in extruded Al-Pb composites. Texture Stress Microstruct. 1988, 8, 429–441. [Google Scholar] [CrossRef]
- Wenk, H.R.; Lonardeli, I.; Pehl, J.; Devine, J.; Prakapenka, V.; Shen, G.; Mao, H.K. In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth Planet. Sci. Lett. 2004, 226, 507–519. [Google Scholar] [CrossRef]
- Wang, Y.; Hilairet, N.; Nishiyama, N.; Yahata, N.; Tsuchiya, T.; Morard, G.; Fiquet, G. High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Implications for multiphase rheology of the lower mantle. Geochem. Geophys. Geosyst. 2013, 14, 3389–3408. [Google Scholar] [CrossRef]
- Miyajima, N.; Walte, N. Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 2009, 109, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Cordier, P.; Ungár, T.; Zsoldos, L.; Tichy, G. Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 2004, 428, 837. [Google Scholar] [CrossRef] [PubMed]
- Lazik, S.; Esling, C. Textures in Multiphase Materials: A Review. Texture Stress Microstruct. 1993, 22, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, P.D.; Tomé, C.N.; Huang, Y. A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 2010, 58, 594–612. [Google Scholar] [CrossRef]
- Merkel, S.; Yagi, T. X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev. Sci. Instrum. 2005, 76, 046109. [Google Scholar] [CrossRef]
- Brown, J.M. The NaCl pressure standard. J. Appl. Phys. 1999, 86, 5801–5808. [Google Scholar] [CrossRef]
- Bassett, W.A.; Takahashi, T.; Mao, H.K.; Weaver, J.S. Pressure-induced phase transformation in NaCl. J. Appl. Phys. 1968, 39, 319–325. [Google Scholar] [CrossRef]
- Heinz, D.L.; Jeanloz, R. Compression of the B2 high-pressure phase of NaCl. Phys. Rev. B 1984, 30, 6045. [Google Scholar] [CrossRef]
- Nishiyama, N.; Katsura, T.; Funakoshi, K.I.; Kubo, A.; Kubo, T.; Tange, Y.; Sueda, Y.; Yokoshi, S. Determination of the phase boundary between the B1 and B2 phases in NaCl by in situ x-ray diffraction. Phys. Rev. B 2003, 68, 134109. [Google Scholar] [CrossRef]
- Sato-Sorensen, Y. Phase transitions and equations of state for the sodium halides: NaF NaCl, NaBr, and NaI. J. Geophys. Res. Solid Earth 1983, 88, 3543–3548. [Google Scholar] [CrossRef]
- Singh, A.K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J. Appl. Phys. 1993, 73, 4278–4286. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Balasingh, C.; Mao, H.K.; Hemley, R.J.; Shu, J. Analysis of lattice strains measured under nonhydrostatic pressure. J. Appl. Phys. 1998, 83, 7567–7575. [Google Scholar] [CrossRef] [Green Version]
- Burnley, P.C.; Zhang, D. Interpreting in situ x-ray diffraction data from high pressure deformation experiments using elastic–plastic self-consistent models: An example using quartz. J. Phys. Condens. Matter 2008, 20, 285201. [Google Scholar] [CrossRef]
- Merkel, S.; Tomé, C.; Wenk, H.R. Modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co. Phys. Rev. B 2009, 79, 064110. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Hilairet, N.; Raterron, P.; Addad, A.; Immoor, J.; Marquardt, H.; Tomé, C.N.; Miyagi, L.; Merkel, S. Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. J. Appl. Phys. 2017, 122, 205902. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.R.; Schultz, A.S.; Richardson, J.W., Jr. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Matthies, S.; Vinel, G.W. On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Phys. Status Solidi 1982, 112, K111–K114. [Google Scholar] [CrossRef]
- Wenk, H.R.; Matthies, S.; Donovan, J.; Chateigner, D. BEARTEX: A Windows-based program system for quantitative texture analysis. J. Appl. Crystallogr. 1998, 31, 262–269. [Google Scholar] [CrossRef]
- Wenk, H.R.; Lutterotti, L.; Kaercher, P.; Kanitpanyacharoen, W.; Miyagi, L.; Vasin, R. Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr. 2014, 29, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Castelnau, O.; Blackman, D.K.; Lebensohn, R.A.; Ponte Castañeda, P. Micromechanical modeling of the viscoplastic behavior of olivine. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Turner, P.A.; Tomé, C.N. A study of residual stresses in Zircaloy-2 with rod texture. Acta Metall. Et Mater. 1994, 42, 4143–4153. [Google Scholar] [CrossRef]
- Lebensohn, R.; Tomé, C.N. A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng. A 1994, 175, 71–82. [Google Scholar] [CrossRef]
- Zha, C.S.; Mao, H.K.; Hemley, R.J. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl. Acad. Sci. USA 2000, 97, 13494–13499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, C.H.; Brody, E.M.; Bassett, W.A. Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell. Rev. Sci. Instrum. 1976, 47, 942–947. [Google Scholar] [CrossRef]
- Carter, N.L.; Heard, H.C. Temperature and rate dependent deformation of halite. Am. J. Sci. 1970, 269, 193–249. [Google Scholar] [CrossRef]
- Copley, S.M.; Pask, J.A. Plastic deformation of MgO single crystals up to 1600 C. J. Am. Ceram. Soc. 1965, 48, 139–146. [Google Scholar] [CrossRef]
- Hulse, C.O.; Copley, S.M.; Pask, J.A. Effect of crystal orientation on plastic deformation of magnesium oxide. J. Am. Ceram. Soc. 1963, 46, 317–323. [Google Scholar] [CrossRef]
- Paterson, M.S.; Weaver, C.W. Deformation of polycrystalline MgO under pressure. J. Am. Ceram. Soc. 1970, 53, 463–471. [Google Scholar] [CrossRef]
- Sato, F.; Sumino, K. The yield strength and dynamic behaviour of dislocations in MgO crystals at high temperatures. J. Mater. Sci. 1980, 15, 1625–1634. [Google Scholar] [CrossRef]
- Barthel, C. Plastiche Anisotropie von Bleisulfid und Magnesiumoxid; University of Gottingen: Gottingen, Germany, 1984. [Google Scholar]
- Appel, F.; Wielke, B. Low temperature deformation of impure MgO single crystals. Mater. Sci. Eng. 1985, 73, 97–103. [Google Scholar] [CrossRef]
- Amodeo, J.; Carrez, P.; Cordier, P. Modelling the effect of pressure on the critical shear stress of MgO single crystals. Philos. Mag. 2012, 92, 1523–1541. [Google Scholar] [CrossRef]
- Franssen, R.C. The rheology of synthetic rocksalt in uniaxial compression. Tectonophysics 1994, 233, 1–40. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Dawson, P.R.; Kern, H.M.; Wenk, H.R. Heterogeneous deformation and texture development in halite polycrystals: Comparison of different modeling approaches and experimental data. Tectonophysics 2003, 370, 287–311. [Google Scholar] [CrossRef]
- Skrotzki, W.; Welch, P. Development of texture and microstructure in extruded ionic polycrystalline aggregates. Tectonophysics 1983, 99, 47–61. [Google Scholar] [CrossRef]
- Merkel, S.; Wenk, H.R.; Shu, J.; Shen, G.; Gillet, P.; Mao, H.K.; Hemley, R.J. Deformation of polycrystalline MgO at pressures of the lower mantle. J. Geophys. Res. Solid Earth 2002, 107, ECV-3. [Google Scholar] [CrossRef]
- Wenk, H.R.; Armann, M.; Burlini, L.; Kunze, K.; Bortolotti, M. Large strain shearing of halite: Experimental and theoretical evidence for dynamic texture changes. Earth Planet. Sci. Lett. 2009, 280, 205–210. [Google Scholar] [CrossRef]
- Lin, F.; Couper, S.; Jugle, M.; Miyagi, L. Competing deformation mechanism in periclase: Implications for lower mantle anisotropy. Minerals 2019, 9, 650. [Google Scholar] [CrossRef]
- Wenk, H.R.; Canova, G.; Molinari, A.; Mecking, H. Texture development in halite: Comparison of Taylor model and self-consistent theory. Acta Metall. 1989, 37, 2017–2029. [Google Scholar] [CrossRef]
- Meade, C.; Jeanloz, R. Yield strength of MgO to 40 GPa. J. Geophys. Res. Solid Earth 1988, 93, 3261–3269. [Google Scholar] [CrossRef]
- Weidner, D.J.; Wang, Y.; Vaughan, M.T. Yield strength at high pressure and temperature. Geophys. Res. Lett. 1994, 21, 753–756. [Google Scholar] [CrossRef]
- Funamori, N.; Yagi, T.; Uchida, T. Deviatoric stress measurement under uniaxial compression by a powder x-ray diffraction method. J. Appl. Phys. 1994, 75, 4327–4331. [Google Scholar] [CrossRef]
- Kinsland, G.L.; Bassett, W.A. Strength of MgO and NaCl polycrystals to confining pressures of 250 kbar at 25 °C. J. Appl. Phys. 1977, 48, 978–985. [Google Scholar] [CrossRef]
- Meade, C.; Jeanloz, R. Yield strength of the B1 and B2 phases of NaCl. J. Geophys. Res. Solid Earth 1988, 93, 3270–3274. [Google Scholar] [CrossRef]
- Singh, A.K.; Kennedy, G.C. Estimation of uniaxial stress component in NaCl samples compressed in a tungsten carbide anvil high-pressure x-ray apparatus. J. Appl. Phys. 1976, 47, 3337–3340. [Google Scholar] [CrossRef]
- Xiong, L.; Bai, L.; Liu, J. Strength and equation of state of NaCl from radial x-ray diffraction. J. Appl. Phys. 2014, 115, 033509. [Google Scholar] [CrossRef]
- Mi, Z.; Shieh, S.R.; Kavner, A.; Kiefer, B.; Wenk, H.R.; Duffy, T.S. Strength and texture of sodium chloride to 56 GPa. J. Appl. Phys. 2018, 123, 135901. [Google Scholar] [CrossRef] [Green Version]
- Burnley, P.C. The importance of stress percolation patterns in rocks and other polycrystalline materials. Nat. Commun. 2013, 4, 2117. [Google Scholar] [CrossRef]
- Bolmaro, R.E.; Guerra, F.M.; Kocks, U.F.; Browning, R.V.; Dawson, P.R.; Embury, J.D.; Poole, W.J. On plastic strain distribution and texture development in fiber composites. Acta Metall. Mater. 1993, 41, 1893–1905. [Google Scholar] [CrossRef]
NaCl/MgO | Slip System | NaCl | MgO | |||||
---|---|---|---|---|---|---|---|---|
100/0 | 0.07 | 0.0065 | - | - | ||||
0.2 | 0.0065 | - | - | |||||
0.11 | 0.0065 | - | - | |||||
80/20 | 0.06 | 0.005 | 0.6 | 0.02 | ||||
0.17 | 0.0035 | 1.6 | 0.02 | |||||
0.23 | 0.007 | - | - | |||||
70/30 | 0.07 | 0.008 | 0.6 | 0.02 | ||||
0.22 | 0.008 | 1.6 | 0.02 | |||||
0.11 | 0.0065 | - | - | |||||
50/50 | 0.06 | 0.008 | 0.7 | 0.0 | ||||
0.25 | 0.011 | 1.7 | 0.0 | |||||
0.10 | 0.008 | - | - | |||||
20/80 * | 0.06 | 0.0035 | 0.75 | 0.0033 | ||||
0.20 | 0.005 | 1.3 | (0–12.5) | (12.5–18) | (18–27) | |||
0.016 | 0.24 | 0.004 | ||||||
0.09 | 0.0047 | - | - | - | - | |||
0/100 * | - | - | 1.2 | 0.0 | ||||
- | - | 2.1 | (0–20) | (20–50) | ||||
0.01 | 0.1 | |||||||
- | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Giannetta, M.; Jugle, M.; Couper, S.; Dunleavy, B.; Miyagi, L. Texture Development and Stress–Strain Partitioning in Periclase + Halite Aggregates. Minerals 2019, 9, 679. https://doi.org/10.3390/min9110679
Lin F, Giannetta M, Jugle M, Couper S, Dunleavy B, Miyagi L. Texture Development and Stress–Strain Partitioning in Periclase + Halite Aggregates. Minerals. 2019; 9(11):679. https://doi.org/10.3390/min9110679
Chicago/Turabian StyleLin, Feng, Max Giannetta, Mike Jugle, Samantha Couper, Becky Dunleavy, and Lowell Miyagi. 2019. "Texture Development and Stress–Strain Partitioning in Periclase + Halite Aggregates" Minerals 9, no. 11: 679. https://doi.org/10.3390/min9110679
APA StyleLin, F., Giannetta, M., Jugle, M., Couper, S., Dunleavy, B., & Miyagi, L. (2019). Texture Development and Stress–Strain Partitioning in Periclase + Halite Aggregates. Minerals, 9(11), 679. https://doi.org/10.3390/min9110679