Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy
Abstract
:1. Introduction
2. Experiment and Methods
2.1. Experiment Details
2.2. Experiment Data Analysis
2.3. Plasticity Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meade, C.; Silver, P.G.; Kaneshima, S. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett. 1995, 22, 1293–1296. [Google Scholar] [CrossRef]
- Montagner, J.P.; Kennett, B.L.N. How to reconcile body-wave and normal-mode reference Earth models. Geophys. J. Int. 1996, 125, 229–248. [Google Scholar] [CrossRef]
- Panning, M.; Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 2006, 167, 361–379. [Google Scholar] [CrossRef]
- Niu, F.; Perez, A.M. Seismic anisotropy in the lower mantle: A comparison of waveform splitting of SKS and SKKS. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Lay, T.; Williams, Q.; Garnero, E.J.; Kellogg, L.; Wysession, M.E. Seismic wave anisotropy in the D″ region and its implications. Core-Mantle Bound. Reg. 1998, 28, 299–318. [Google Scholar]
- Garnero, E.J.; Maupin, V.; Lay, T.; Fouch, M.J. Variable azimuthal anisotropy in Earth’s lowermost mantle. Science 2004, 306, 259–261. [Google Scholar] [CrossRef]
- Cottaar, S.; Romanowicz, B. Observations of changing anisotropy across the southern margin of the African LLSVP. Geophys. J. Int. 2013, 195, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Lynner, C.; Long, M.D. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys. Res. Lett. 2014, 41, 3447–3454. [Google Scholar] [CrossRef]
- Romanowicz, B.; Wenk, H.R. Anisotropy in the deep Earth. Phys. Earth Planet. Inter. 2017, 269, 58–90. [Google Scholar] [CrossRef]
- Merkel, S.; McNamara, A.K.; Kubo, A.; Speziale, S.; Miyagi, L.; Meng, Y.; Duffy, T.; Wenk, H.R. Deformation of (Mg, Fe) SiO3 post-perovskite and D″ anisotropy. Science 2007, 316, 1729–1732. [Google Scholar] [CrossRef]
- Miyagi, L.; Kanitpanyacharoen, W.; Kaercher, P.; Lee, K.K.; Wenk, H.R. Slip systems in MgSiO3 post-perovskite: Implications for D′′ anisotropy. Science 2010, 329, 1639–1641. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, A.; Wookey, J.; Kendall, J.M. New advances in using seismic anisotropy, mineral physics and geodynamics to understand deformation in the lowermost mantle. J. Geodyn. 2011, 52, 205–228. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, L.; Wenk, H.R. Texture development and slip systems in bridgmanite and bridgmanite+ ferropericlase aggregates. Phys. Chem. Miner. 2016, 43, 597–613. [Google Scholar] [CrossRef]
- Tsujino, N.; Nishihara, Y.; Yamazaki, D.; Seto, Y.; Higo, Y.; Takahashi, E. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 2016, 539, 81. [Google Scholar] [CrossRef] [PubMed]
- Wenk, H.R.; Speziale, S.; McNamara, A.K.; Garnero, E.J. Modeling lower mantle anisotropy development in a subducting slab. Earth Planet. Sci. Lett. 2006, 245, 302–314. [Google Scholar] [CrossRef]
- Wenk, H.R.; Cottaar, S.; Tomé, C.N.; McNamara, A.; Romanowicz, B. Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth Planet. Sci. Lett. 2011, 306, 33–45. [Google Scholar] [CrossRef]
- Walker, A.M.; Forte, A.M.; Wookey, J.; Nowacki, A.; Kendall, J.M. Elastic anisotropy of D″ predicted from global models of mantle flow. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Cottaar, S.; Li, M.; McNamara, A.K.; Romanowicz, B.; Wenk, H.R. Synthetic seismic anisotropy models within a slab impinging on the core–mantle boundary. Geophys. J. Int. 2014, 199, 164–177. [Google Scholar] [CrossRef]
- Girard, J.; Amulele, G.; Farla, R.; Mohiuddin, A.; Karato, S.I. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 2016, 351, 144–147. [Google Scholar] [CrossRef]
- Marquardt, H.; Speziale, S.; Reichmann, H.J.; Frost, D.J.; Schilling, F.R.; Garnero, E.J. Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science 2009, 324, 224–226. [Google Scholar] [CrossRef]
- Finkelstein, G.J.; Jackson, J.M.; Said, A.; Alatas, A.; Leu, B.M.; Sturhahn, W.; Toellner, T.S. Strongly Anisotropic Magnesiowüstite in Earth’s Lower Mantle. J. Geophys. Res. Solid Earth 2018, 123, 4740–4750. [Google Scholar] [CrossRef]
- Amodeo, J.; Merkel, S.; Tromas, C.; Carrez, P.; Korte-Kerzel, S.; Cordier, P.; Chevalier, J. Dislocations and Plastic Deformation in MgO Crystals: A Review. Crystals 2018, 8, 240. [Google Scholar] [CrossRef]
- Copley, S.M.; Pask, J.A. Plastic deformation of MgO single crystals up to 1600 C. J. Am. Ceram. Soc. 1965, 48, 139–146. [Google Scholar] [CrossRef]
- Hulse, C.O.; Copley, S.M.; Pask, J.A. Effect of crystal orientation on plastic deformation of magnesium oxide. J. Am. Ceram. Soc. 1963, 46, 317–323. [Google Scholar] [CrossRef]
- Paterson, M.S.; Weaver, C.W. Deformation of polycrystalline MgO under pressure. J. Am. Ceram. Soc. 1970, 53, 463–471. [Google Scholar] [CrossRef]
- Sato, F.; Sumino, K. The yield strength and dynamic behavior of dislocations in MgO crystals at high temperatures. J. Mater. Sci. 1980, 15, 1625–1634. [Google Scholar] [CrossRef]
- Barthel, C. Plastiche Anisotropie von Bleisulfid und Magnesiumoxid; University of Gottingen: Gottingen, Germany, 1984. [Google Scholar]
- Appel, F.; Wielke, B. Low temperature deformation of impure MgO single crystals. Mater. Sci. Eng. 1985, 73, 97–103. [Google Scholar] [CrossRef]
- Stretton, I.; Heidelbach, F.; Mackwell, S.; Langenhorst, F. Dislocation creep of magnesiowüstite (Mg0. 8Fe0. 2O). Earth Planet. Sci. Lett. 2001, 194, 229–240. [Google Scholar] [CrossRef]
- Amodeo, J.; Carrez, P.; Cordier, P. Modelling the effect of pressure on the critical shear stress of MgO single crystals. Philos. Mag. 2012, 92, 1523–1541. [Google Scholar] [CrossRef]
- Carrez, P.; Ferré, D.; Cordier, P. Peierls–Nabarro modelling of dislocations in MgO from ambient pressure to 100 GPa. Model. Simul. Mater. Sci. Eng. 2009, 17, 035010. [Google Scholar] [CrossRef]
- Girard, J.; Chen, J.; Raterron, P. Deformation of periclase single crystals at high pressure and temperature: Quantification of the effect of pressure on slip-system activities. J. Appl. Phys. 2012, 111, 112607. [Google Scholar] [CrossRef]
- Lin, F.; Hilairet, N.; Raterron, P.; Addad, A.; Immoor, J.; Marquardt, H.; Tomé, C.N.; Miyagi, L.; Merkel, S. Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. J. Appl. Phys. 2017, 122, 205902. [Google Scholar] [CrossRef]
- Merkel, S.; Wenk, H.R.; Shu, J.; Shen, G.; Gillet, P.; Mao, H.K.; Hemley, R.J. Deformation of polycrystalline MgO at pressures of the lower mantle. J. Geophys. Res. Solid Earth 2002, 107, ECV-3. [Google Scholar] [CrossRef]
- Lin, J.F.; Wenk, H.R.; Voltolini, M.; Speziale, S.; Shu, J.; Duffy, T.S. Deformation of lower-mantle ferropericlase (Mg, Fe) O across the electronic spin transition. Phys. Chem. Miner. 2009, 36, 585. [Google Scholar] [CrossRef]
- Marquardt, H.; Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 2015, 8, 311. [Google Scholar] [CrossRef]
- Immoor, J.; Marquardt, H.; Miyagi, L.; Lin, F.; Speziale, S.; Merkel, S.; Buchen, J.; Kurnosov, A.; Liermann, H.P. Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments. Earth Planet. Sci. Lett. 2018, 489, 251–257. [Google Scholar] [CrossRef]
- Merkel, S.; Yagi, T. X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev. Sci. Instrum. 2005, 76, 046109. [Google Scholar] [CrossRef]
- Singh, A.K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J. Appl. Phys. 1993, 73, 4278–4286. [Google Scholar] [CrossRef] [Green Version]
- Zha, C.S.; Mao, H.K.; Hemley, R.J. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl. Acad. Sci. USA 2000, 97, 13494–13499. [Google Scholar] [CrossRef] [Green Version]
- Lutterotti, L.; Matthies, S.; Wenk, H.R.; Schultz, A.S.; Richardson, J.W., Jr. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Wenk, H.R.; Lutterotti, L.; Kaercher, P.; Kanitpanyacharoen, W.; Miyagi, L.; Vasin, R. Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr. 2014, 29, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, P.D.; Tomé, C.N.; Huang, Y. A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 2010, 58, 594–612. [Google Scholar] [CrossRef]
- Amodeo, J.; Dancette, S.; Delannay, L. Atomistically-informed crystal plasticity in MgO polycrystals under pressure. Int. J. Plast. 2016, 82, 177–191. [Google Scholar] [CrossRef]
- Singh, A.K.; Liermann, H.P.; Saxena, S.K. Strength of magnesium oxide under high pressure: Evidence for the grain-size dependence. Solid State Commun. 2004, 132, 795–798. [Google Scholar] [CrossRef]
- Karki, B.B.; Wentzcovitch, R.D.; De Gironcoli, S.; Baroni, S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 1999, 286, 1705–1707. [Google Scholar] [CrossRef]
Pressure | 0 GPa | 0–20 GPa | 20–50 GPa | |
---|---|---|---|---|
Slip System | ||||
1.2 GPa | 1.2 GPa | 1.2 GPa | ||
2.1 GPa | d(CRSS)/dP = 0.01 | d(CRSS)/dP = 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Couper, S.; Jugle, M.; Miyagi, L. Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy. Minerals 2019, 9, 650. https://doi.org/10.3390/min9110650
Lin F, Couper S, Jugle M, Miyagi L. Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy. Minerals. 2019; 9(11):650. https://doi.org/10.3390/min9110650
Chicago/Turabian StyleLin, Feng, Samantha Couper, Mike Jugle, and Lowell Miyagi. 2019. "Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy" Minerals 9, no. 11: 650. https://doi.org/10.3390/min9110650
APA StyleLin, F., Couper, S., Jugle, M., & Miyagi, L. (2019). Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy. Minerals, 9(11), 650. https://doi.org/10.3390/min9110650