The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Organic Geochemistry and Mineralogy
3.2. Lithofacies Classification
3.3. Field Emission-Scanning Electron Microscope (FE-SEM) Imaging
3.3.1. Organic Matter Pores
3.3.2. Inorganic Minerals Pores
3.3.3. Image Processing Analyses
3.4. LPNP Isotherms and FHH Fractal Dimensions
3.5. MICP Analysis
3.6. Full-Size Pore Characterization
4. Discussion
4.1. The Impacts of Lithofacies on Pore Structure
4.2. The Impacts of Lithofacies on Pore Fractal Dimensions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radlinski, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Tang, X.L.; Jiang, Z.X.; Li, Z.; Gao, Z.Y.; Bai, Y.Q.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Wang, P.F.; Jiang, Z.X.; Yin, L.S.; Chen, L.; Li, Z.; Zhang, C.; Li, T.W.; Huang, P. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and gas adsorption analysis. J. Pet. Sci Eng. 2017, 156, 307–321. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Ross, D.J.K.; Bustin, R.M. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada. Int. J. Coal Geol. 2012, 103, 120–131. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.L.; Wang, R.Y.; He, J.H.; Wang, X.H.; Sun, Y.X.; Gu, Y.; Jiao, N.L. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: A case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China. J. Nat. Gas Sci. Eng. 2017, 37, 29–38. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.F.; Liu, H.Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Wang, G.C.; Ju, Y.W.; Yan, Z.F.; Li, Q.G. Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan-Huaibei Coalfield in China. Mar. Pet. Geol. 2015, 62, 1–13. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Tang, D.Z.; Tang, S.H.; Huang, W.H.; Liu, Z.H.; Che, Y. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Comput. Geosci. 2009, 35, 1159–1166. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Xiao, X.M.; Wilkins, R.W.T.; Meng, Z.P.; Huang, B.J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N-2 adsorption and FE-SEM methods. Mar. Pet. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Liang, L.X.; Xiong, J.; Liu, X.J. An investigation of the fractal characteristics of the Upper Ordovician Wufeng Formation shale using nitrogen adsorption analysis. J. Nat. Gas Sci. Eng. 2015, 27, 402–409. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.C.; Wang, X.Z.; Tang, X.; Chen, Y.C.; Jiang, L.L.; Gong, X. Nanoscale pore structure and fractal characteristics of a marine-continental transitional shale: A case study from the lower Permian Shanxi Shale in the southeastern Ordos Basin, China. Mar. Pet. Geol. 2017, 88, 54–68. [Google Scholar] [CrossRef]
- Shao, X.H.; Pang, X.Q.; Li, Q.W.; Wang, P.W.; Chen, D.; Shen, W.B.; Zhao, Z.F. Pore structure and fractal characteristics of organic-rich shales: A case study of the lower Silurian Longmaxi shales in the Sichuan Basin, SW China. Mar. Pet. Geol. 2017, 80, 192–202. [Google Scholar] [CrossRef]
- Bu, H.L.; Ju, Y.W.; Tan, J.Q.; Wang, G.C.; Li, X.S. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China. J. Nat. Gas Sci. Eng. 2015, 24, 166–177. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc. Natl. Acad. Sci. USA 1975, 72, 3825–3828. [Google Scholar] [CrossRef]
- Pfeifer, P. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1984, 80, 4573. [Google Scholar] [CrossRef]
- Schlueter, E.M.; Zimmerman, R.W. The fractal dimension of pores in sedimentary rocks and its influence on permeability. Eng. Geol. 1997, 48, 199–215. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Javadpour, F. Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone). J. Can. Pet. Technol. 2009, 48, 16–21. [Google Scholar] [CrossRef]
- Liu, J.Z.; Zhu, J.F.; Cheng, J.; Zhou, J.H.; Cen, K.F. Pore structure and fractal analysis of Ximeng lignite under microwave irradiation. Fuel 2015, 146, 41–50. [Google Scholar] [CrossRef]
- Ji, W.M.; Song, Y.; Jiang, Z.X.; Meng, M.M.; Liu, Q.X.; Chen, L.; Wang, P.F.; Gao, F.L.; Huang, H.X. Fractal characteristics of nano-pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, south China. Mar. Pet. Geol. 2016, 78, 88–98. [Google Scholar] [CrossRef]
- Slatt, R.M.; Rodriguez, N.D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence? J. Nat. Gas Sci. Eng. 2012, 8, 68–84. [Google Scholar] [CrossRef]
- Wang, G.C.; Carr, T.R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian basin. Comput. Geosci. 2012, 49, 151–163. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef]
- Tan, J.Q.; Weniger, P.; Krooss, B.; Merkel, A.; Horsfield, B.; Zhang, J.C.; Boreham, C.J.; van Graas, G.; Tocher, B.A. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II: Methane sorption capacity. Fuel 2014, 129, 204–218. [Google Scholar] [CrossRef]
- Tang, X.L.; Jiang, Z.X.; Huang, H.X.; Jiang, S.; Yang, L.; Xiong, F.Y.; Chen, L.; Feng, J. Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 28, 338–346. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.C.; Jiang, S.; Li, J.Q.; Guo, T.L.; Luo, C. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China. Mar. Petrol. Geol. 2015, 65, 232–246. [Google Scholar] [CrossRef]
- Gao, F.L.; Song, Y.; Li, Z.; Xiong, F.Y.; Chen, L.; Zhang, Y.H.; Liang, Z.K.; Zhang, X.X.; Chen, Z.Y.; Joachim, M. Lithofacies and reservoir characteristics of the Lower Cretaceous continental Shahezi Shale in the Changling Fault Depression of Songliao Basin, NE China. Mar. Petrol. Geol. 2018, 98, 401–421. [Google Scholar] [CrossRef]
- Cai, Q.S.; Hu, M.Y.; Ngia, N.R.; Hu, Z.G. Sequence stratigraphy, sedimentary systems and implications for hydrocarbon exploration in the northern Xujiaweizi Fault Depression, Songliao Basin, NE China. J. Pet. Sci. Eng. 2017, 152, 471–494. [Google Scholar] [CrossRef]
- Huang, W.B.; Lu, S.F.; Osman, S.H. Quality grading system for tight sandstone reservoirs in the Quantou 4 Member, southern Songliao Basin, Northeast China. Interpret. J. Sub. 2017, 5, T503–T522. [Google Scholar] [CrossRef]
- Ding, X.Q.; Hersi, O.S.; Hu, X.; Zhu, Y.; Zhang, S.N.; Miao, C.S. Diagenesis of volcanic-rich tight sandstones and conglomerates: A case study from Cretaceous Yingcheng Formation, Changling Sag, Songliao Basin, China. Arab. J. Geosci. 2018, 11, 287. [Google Scholar] [CrossRef]
- Lin, J.H.; Jiang, T.; Song, L.B.; Cao, Y.; Xia, D.; Wang, Y. The origin and gas vertical distribution of the Harjin mixed-gas reservoir. Acta Pet. Sin. 2010, 34, 927–932. [Google Scholar]
- Jarvie, D.M.; Claxton, B.L.; Henk, F.B.; Breyer, J.T. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas, AAPG National Convention, June 3–6, 2001, Denver, CO. AAPG Bull. 2001, 85, 100. [Google Scholar]
- Jarvie, D.M.; Hill, R.J.; Pollastro, R.M. Assessment of the gas potential and yields from shales: The Barnett Shale model. Oklahoma Geol. Surv. Circ. 2005, 110, 37–50. [Google Scholar]
- Ufer, K.; Stanjek, H.; Roth, G.; Dohrmann, R.; Kleeberg, R.; Kaufhold, S. Quantitative phase analysis of bentonites by the Rietveld method. Clays Clay Miner. 2008, 56, 272–282. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Tang, X.L.; Jiang, Z.X.; Jiang, S.; Li, Z. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Mar. Petrol. Geol. 2016, 78, 99–109. [Google Scholar] [CrossRef]
- Jiao, K.; Ye, Y.H.; Liu, S.G.; Ran, B.; Deng, B.; Li, Z.W.; Li, J.X.; Yong, Z.Q.; Sun, W. Characterization and Evolution of Nanoporosity in Superdeeply Buried Shales: A Case Study of the Longmaxi and Qiongzhusi Shales from MS Well #1, North Sichuan Basin, China. Energy Fuels 2018, 32, 191–203. [Google Scholar]
- Guo, T.L.; Zhang, H.R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Pet. Explor. Dev. 2014, 41, 31–40. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.Y.; Hu, Q.H. Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition. AAPG Bull. 2016, 100, 101–114. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, K.Y.; Tan, J.Q.; Gao, F.L.; Wang, P.F. Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development. J. Nat. Gas Sci. Eng. 2017, 46, 1–15. [Google Scholar] [CrossRef]
- Wei, Z.F.; Wang, Y.L.; Wang, G.; Sun, Z.P.; Xu, L. Pore characterization of organic-rich Late Permian Da-long Formation shale in the Sichuan Basin, southwestern China. Fuel 2018, 211, 507–516. [Google Scholar] [CrossRef]
- Wang, Q.T.; Lu, H.; Wang, T.L.; Liu, D.Y.; Peng, P.A.; Zhan, X.; Li, X.Q. Pore characterization of Lower Silurian shale gas reservoirs in the Middle Yangtze region, central China. Mar. Pet. Geol. 2018, 89, 14–26. [Google Scholar] [CrossRef]
- Fu, H.J.; Wang, X.Z.; Zhang, L.X.; Gao, R.M.; Li, Z.T.; Xu, T.; Zhu, X.L.; Xu, W.; Li, Q. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos Basin, China. J. Nat. Gas Sci. Eng. 2015, 26, 1422–1432. [Google Scholar] [CrossRef]
- Jiang, F.J.; Chen, D.; Wang, Z.F.; Xu, Z.Y.; Chen, J.; Liu, L.; Huyan, Y.Y.; Liu, Y. Pore characteristic analysis of a lacustrine shale: A case study in the Ordos Basin, NW China. Mar. Pet. Geol. 2016, 73, 554–571. [Google Scholar] [CrossRef]
- Curtis, M.E.; Sondergeld, C.H.; Ambrose, R.J.; Rai, C.S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull. 2012, 96, 665–677. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.Z.; Hu, Q.H. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Wu, S.T.; Zhu, R.K.; Cui, J.G.; Cui, J.W.; Bai, B.; Zhang, X.X.; Jin, X.; Zhu, D.S.; You, J.C.; Li, X.H. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 185–195. [Google Scholar] [CrossRef]
- Lu, J.M.; Ruppel, S.C.; Rowe, H.D. Organic matter pores and oil generation in the Tuscaloosa marine shale. AAPG Bull. 2015, 99, 333–357. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Li, T.W.; Jiang, Z.X.; Li, Z.; Wang, P.F.; Xu, C.L.; Liu, G.H.; Su, S.Y.; Ning, C.X. Continental shale pore structure characteristics and their controlling factors: A case study from the lower third member of the Shahejie Formation, Zhanhua Sag, Eastern China. J. Nat. Gas. Sci. Eng. 2017, 45, 670–692. [Google Scholar] [CrossRef]
No. | Sample ID | Well ID | Depth (m) | Lithofacies | Mineral Composition (%) | Geochemical Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Pyrite | Clay | TOC (%) | Ro (%) | Tmax (°C) | S1 (mg/g) | S2 (mg/g) | HI (mg/g) | |||||
1 | CL-1 | S-101 | 2392.66 | OPS | 37.6 | 23.4 | 39 | 0.9704 | 1.68 | 492 | 0.56 | 2.12 | 218 | ||
2 | CL-2 | S-101 | 2397.93 | OPS | 33 | 15.0 | 52 | 0.8516 | 1.75 | 495 | 0.2 | 2.11 | 247 | ||
3 | CL-3 | S-101 | 2450.64 | OPS | 56.9 | 1.7 | 41.4 | 0.9204 | 1.96 | 507 | 1.26 | 2.24 | 243 | ||
4 | CL-4 | S-101 | 2463.65 | OMSS | 31 | 22.0 | 47 | 1.378 | 2.44 | 534 | 0.61 | 2.08 | 150 | ||
5 | CL-5 | S-101 | 2465.24 | OMMS | 0 | 48.0 | 19 | 30 | 1.516 | 1.97 | 507 | 0.02 | 0.04 | 3 | |
6 | CL-6 | SL-2 | 3077.12 | OMSS | 41 | 19.0 | 40 | 1.122 | 1.95 | 506 | 0.22 | 0.54 | 48 | ||
7 | CL-7 | SL-2 | 3077.77 | OPS | 41.5 | 4.8 | 53.7 | 0.9264 | 1.99 | 508 | 0.14 | 0.44 | 47 | ||
8 | CL-8 | SL-2 | 3430.14 | ORAS | 34.4 | 10.1 | 50.5 | 3.569 | 1.98 | 508 | 0.11 | 0.66 | 18 | ||
9 | CL-9 | SL-2 | 3432.44 | OMAS | 30.6 | 69.4 | 1.516 | 1.35 | 473 | 0.16 | 0.26 | 17 | |||
10 | CL-10 | SL-2 | 3433.48 | OMAS | 36 | 0.5 | 0.9 | 62.6 | 1.395 | 1.43 | 478 | 0.1 | 0.35 | 25 | |
11 | CL-11 | SL-2 | 3433.88 | ORAS | 37.4 | 6.6 | 0.8 | 55.2 | 2.519 | 1.64 | 489 | 0.12 | 0.36 | 14 | |
12 | CL-12 | SL-2 | 3435.15 | OMAS | 35.5 | 6.2 | 2.8 | 55.5 | 1.186 | 1.68 | 491 | 0.34 | 0.31 | 26 | |
13 | CL-13 | SL-2 | 3434.58 | OMAS | 42.4 | 6.1 | 51.5 | 1.791 | 1.67 | 491 | 0.09 | 0.27 | 23 | ||
14 | CL-14 | B-201 | 3742.5 | OPS | 52.2 | 16.7 | 31.1 | 0.8402 | 1.88 | 502 | 0.19 | 0.25 | 13 | ||
15 | CL-15 | B-201 | 3748.55 | ORAS | 36.8 | 6.4 | 1.6 | 55.2 | 3.533 | 1.90 | 503 | 0.87 | 1.29 | 154 | |
16 | CL-16 | B-201 | 3893.93 | OMAS | 29.4 | 4.2 | 1.9 | 64.5 | 1.041 | 2.06 | 512 | 0.13 | 0.42 | 12 | |
17 | CL-17 | B-201 | 3896.08 | OMAS | 30.1 | 2.3 | 67.6 | 1.084 | 2.09 | 514 | 0.35 | 0.51 | 47 | ||
18 | CL-18 | B-201 | 3897.67 | OMAS | 27.1 | 2.5 | 1.7 | 68.7 | 1.505 | 1.99 | 509 | 0.33 | 0.73 | 49 | |
19 | CL-19 | B-201 | 3937.69 | OMMS | 40.4 | 4.9 | 6.3 | 46.1 | 1.597 | 2.06 | 512 | 0.41 | 0.78 | 49 | |
20 | CL-20 | B-201 | 3938.2 | ORSS | 49.7 | 4.2 | 46.1 | 2.159 | 2.06 | 513 | 0.61 | 0.99 | 46 | ||
21 | CL-21 | B-201 | 3942.08 | OPS | 20.9 | 25.2 | 53.9 | 0.9213 | 2.08 | 513 | 0.07 | 0.1 | 11 | ||
22 | CL-22 | B-201 | 3943.27 | ORMS | 32.7 | 12 | 7.8 | 42.6 | 2.852 | 2.04 | 511 | 0.15 | 0.45 | 16 |
Pore Type | Number of Pores | Percentage (%) | Pore Size (nm) | Pore Area (nm2) | Fractal Dimension | ||
---|---|---|---|---|---|---|---|
Min Value | Max Value | Mean | |||||
OM pore | 1306 | 35.6 | 12.6 | 355.9 | 35.6 | 4996.2 | 1.18 |
InterP pore | 2157 | 58.8 | 18.8 | 890.6 | 56.2 | 8762.3 | 1.44 |
IntraP pore | 206 | 5.6 | 25.9 | 240.4 | 27.9 | 2237.8 | 1.06 |
Sample ID | Lithofacies | Fitting Equation | k1 | D1 | Coefficient (R2) | Fitting Equation | k2 | D2 | Coefficient (R2) |
---|---|---|---|---|---|---|---|---|---|
CL-14 | OPS | y = −0.5988x + 1.0935 | −0.5988 | 2.4012 | 0.9713 | y = −0.2698x + 1.1944 | −0.3 | 2.7302 | 0.9751 |
CL-15 | ORAS | y = −0.5406x + 0.7522 | −0.5406 | 2.4594 | 0.9817 | y = −0.1774x + 0.8864 | −0.2 | 2.8226 | 0.9599 |
CL-16 | OMAS | y = −0.4616x + 1.2673 | −0.4616 | 2.5384 | 0.9888 | y = −0.1707x + 1.3873 | −0.2 | 2.8293 | 0.967 |
CL-17 | OMAS | y = −0.4346x + 1.5913 | −0.4346 | 2.5654 | 0.9876 | y = −0.1521x + 1.6985 | −0.2 | 2.8479 | 0.9634 |
CL-18 | OMAS | y = −0.4043x + 1.4172 | −0.4043 | 2.5957 | 0.996 | y = −0.1671x + 1.5363 | −0.2 | 2.8329 | 0.9618 |
CL-19 | OMMS | y = −0.4346x + 1.5913 | −0.4346 | 2.5654 | 0.9876 | y = −0.1521x + 1.6985 | −0.2 | 2.8479 | 0.9634 |
CL-20 | ORSS | y = −0.5538x + 1.2747 | −0.5538 | 2.4462 | 0.9607 | y = −0.1179x + 1.3827 | −0.1 | 2.8821 | 0.9363 |
CL-21 | OPS | y = −0.4736x + 1.0863 | −0.4736 | 2.5264 | 0.9886 | y = −0.1474x + 1.2352 | −0.1 | 2.8526 | 0.9434 |
CL-22 | ORMS | y = −0.4814x + 1.1951 | −0.4814 | 2.5186 | 0.987 | y = −0.263x + 1.2421 | −0.3 | 2.737 | 0.9896 |
CL-6 | OMSS | y = −0.5332x + 0.711 | −0.5332 | 2.4668 | 0.9881 | y = −0.2223x + 0.8492 | −0.2 | 2.7777 | 0.9653 |
CL-7 | OPS | y = −0.4814x + 1.1951 | −0.4814 | 2.5186 | 0.987 | y = −0.263x + 1.2421 | −0.3 | 2.737 | 0.9894 |
CL-8 | ORAS | y = −0.4648x + 1.0287 | −0.4648 | 2.5352 | 0.993 | y = −0.1601x + 1.1526 | −0.2 | 2.8399 | 0.9703 |
CL-9 | OMAS | y = −0.4508x + 1.2572 | −0.4508 | 2.5492 | 0.985 | y = −0.1715x + 1.3519 | −0.2 | 2.8285 | 0.9571 |
CL-10 | OMAS | y = −0.4393x + 0.7203 | −0.4393 | 2.5607 | 0.9966 | y = −0.2436x + 0.8057 | −0.2 | 2.7564 | 0.9869 |
CL-11 | ORAS | y = −0.4814x + 1.1951 | −0.4814 | 2.5186 | 0.987 | y = −0.263x + 1.2421 | −0.3 | 2.737 | 0.9894 |
CL-12 | OMAS | y = −0.5027x + 0.7836 | −0.5027 | 2.4973 | 0.9576 | y = −0.1785x + 0.867 | −0.2 | 2.8215 | 0.9763 |
CL-13 | OMAS | y = −0.842x + 0.5915 | −0.842 | 2.158 | 0.9415 | y = −0.1831x + 0.7362 | −0.2 | 2.8169 | 0.9388 |
CL-1 | OPS | y = −0.7984x − 0.5986 | −0.7984 | 2.2016 | 0.9905 | y = −0.3638x − 0.4258 | −0.4 | 2.6362 | 0.9701 |
CL-3 | OPS | y = −0.9664x − 1.4317 | −0.9664 | 2.0336 | 0.9967 | y = −0.4221x − 1.183 | −0.4 | 2.5779 | 0.9696 |
CL-4 | OMSS | y = −0.7577x − 0.05 | −0.757 | 2.243 | 0.9984 | y = −0.3871x + 0.1337 | −0.4 | 2.6129 | 0.9824 |
CL-5 | OMMS | y = −0.4417x + 1.6823 | −0.4417 | 2.5583 | 0.9965 | y = −0.2737x + 1.7491 | −0.3 | 2.7263 | 0.9698 |
CL-2 | OPS | y = −0.6771x + 0.7099 | −0.6771 | 2.3229 | 0.9921 | y = −0.4417x + 1.6824 | −0.3 | 2.7264 | 0.9595 |
Sample ID | Lithofacies | Pore Volume (cm3/g) | Percentage (%) | |||||
---|---|---|---|---|---|---|---|---|
Micropore | Mesopore | Macropore | Total | Micropore | Mesopore | Macropore | ||
CL-15 | ORAS | 0.0045 | 0.0055 | 0.0022 | 0.0122 | 36.80 | 45.13 | 18.07 |
CL-8 | 0.0036 | 0.0058 | 0.0067 | 0.0162 | 22.47 | 36.07 | 41.46 | |
CL-11 | 0.0044 | 0.0026 | 0.0079 | 0.0149 | 29.70 | 17.37 | 52.93 | |
Mean | 0.0042 | 0.0046 | 0.0056 | 0.0144 | 29.00 | 32.17 | 38.84 | |
CL-20 | ORSS | 0.0039 | 0.0043 | 0.0042 | 0.0123 | 31.28 | 34.68 | 34.04 |
Mean | 0.0039 | 0.0043 | 0.0042 | 0.0123 | 31.28 | 34.68 | 34.04 | |
CL-22 | ORMS | 0.0023 | 0.0175 | 0.0065 | 0.0263 | 8.80 | 66.46 | 24.75 |
Mean | 0.0023 | 0.0175 | 0.0065 | 0.0263 | 8.80 | 66.46 | 24.75 | |
CL-16 | OMAS | 0.0035 | 0.0103 | 0.0071 | 0.0209 | 16.79 | 49.22 | 33.99 |
CL-17 | 0.0046 | 0.0122 | 0.0067 | 0.0235 | 19.63 | 51.88 | 28.48 | |
CL-9 | 0.0041 | 0.0083 | 0.0068 | 0.0193 | 21.48 | 43.22 | 35.30 | |
CL-10 | 0.0030 | 0.0078 | 0.0024 | 0.0132 | 22.77 | 59.03 | 18.20 | |
CL-12 | 0.0027 | 0.0053 | 0.0036 | 0.0116 | 23.37 | 45.55 | 31.07 | |
CL-13 | 0.0044 | 0.0023 | 0.0019 | 0.0086 | 51.38 | 26.59 | 22.03 | |
Mean | 0.0037 | 0.0083 | 0.0049 | 0.0169 | 22.06 | 48.96 | 28.98 | |
CL-6 | OMSS | 0.0030 | 0.0080 | 0.0039 | 0.0149 | 19.93 | 53.88 | 26.20 |
Mean | 0.0030 | 0.0080 | 0.0039 | 0.0149 | 19.93 | 53.88 | 26.20 | |
CL-5 | 0.0042 | 0.0186 | 0.0125 | 0.0353 | 11.92 | 52.69 | 35.41 | |
CL-19 | OMMS | 0.0036 | 0.0116 | 0.0057 | 0.0209 | 17.31 | 55.46 | 27.23 |
Mean | 0.0039 | 0.0151 | 0.0091 | 0.0281 | 14.615 | 54.075 | 31.32 | |
CL-1 | OPS | 0.0012 | 0.0048 | 0.0042 | 0.0102 | 11.72 | 47.10 | 41.18 |
CL-3 | 0.0007 | 0.0025 | 0.0020 | 0.0052 | 13.62 | 47.65 | 38.72 | |
CL-7 | 0.0036 | 0.0087 | 0.0032 | 0.0155 | 23.35 | 56.01 | 20.64 | |
CL-21 | 0.0036 | 0.0073 | 0.0050 | 0.0159 | 22.48 | 46.12 | 31.39 | |
Mean | 0.0026 | 0.0062 | 0.0034 | 0.0122 | 21.60 | 50.53 | 27.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liang, Z.; Jiang, Z.; Gao, F.; Zhang, Y.; Yu, H.; Xiao, L.; Yang, Y. The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China. Minerals 2019, 9, 127. https://doi.org/10.3390/min9020127
Li Z, Liang Z, Jiang Z, Gao F, Zhang Y, Yu H, Xiao L, Yang Y. The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China. Minerals. 2019; 9(2):127. https://doi.org/10.3390/min9020127
Chicago/Turabian StyleLi, Zhuo, Zhikai Liang, Zhenxue Jiang, Fenglin Gao, Yinghan Zhang, Hailong Yu, Lei Xiao, and Youdong Yang. 2019. "The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China" Minerals 9, no. 2: 127. https://doi.org/10.3390/min9020127
APA StyleLi, Z., Liang, Z., Jiang, Z., Gao, F., Zhang, Y., Yu, H., Xiao, L., & Yang, Y. (2019). The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China. Minerals, 9(2), 127. https://doi.org/10.3390/min9020127