Evaluating Metal Criticality for Low-Carbon Power Generation Technologies in Japan
Abstract
:1. Introduction
2. Methods
2.1. Objective Technologies and Metals
2.2. Evaluation of Metal Criticality Dimension
2.2.1. Supply Risk (SR)
2.2.2. Vulnerability to Supply Restriction (VSR)
2.2.3. Weighting and Aggregation
2.3. Overall Criticality of Low-carbon Power Generation Technologies
3. Results
3.1. Assessment in Supply Risk and Vulnerability to Supply Restriction of Each Metal
3.2. Assessment Aggregation of Two Axes
3.3. Overall Criticality of Low-Carbon Power Generation Technologies
4. Discussions
4.1. Comparison with Previous Metal Criticality Studies in Japan
4.2. Policy Implications
4.3. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pasqualetti, M.J.; Sovacool, B.K. The importance of scale to energy security. J. Integr. Environ. Sci. 2012, 9, 167–180. [Google Scholar] [CrossRef]
- Kosai, S.; Unesaki, H. Quantitative Analysis on the Impact of Nuclear Energy Supply Disruption on Electricity Supply Security. Appl. Energy 2018, 208, 1198–1207. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Energy Technology Perspective 2017: Catalysing Energy Technology Transformations; International Energy Agency: Paris, France, 2017; ISBN 978-92-64-27597-3. [Google Scholar]
- Kleijn, R.; Van der Voet, E.; Kramer, G.J.; Van Oers, L.; Van der Giesen, C. Metal requirements of low-carbon power generation. Energy 2011, 36, 5640–5648. [Google Scholar] [CrossRef]
- Kleijn, R.; Van der Voet, E. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration. Renew. Sust. Energ. Rev. 2010, 14, 2784–2795. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 2013, 59, 260–273. [Google Scholar] [CrossRef]
- Sun, Z.; Cao, H.; Xiao, Y.; Sietsma, J.; Jin, W.; Agterhuis, H.; Yang, Y. Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes. ACS Sustain. Chem. Eng. 2017, 5, 21–40. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Critical Materials Strategy: 2010; U.S. Department of Energy: Washington, DC, USA, 2010.
- European Commission. Critical Raw Materials for the EU, Brussel; European Commission: Brussel, Belgium, 2010. [Google Scholar]
- Tokimatsu, K.; Wachtmeister, H.; McLellan, B.; Davidsson, S.; Murakami, S.; Hook, M.; Yasuoka, R.; Nishio, M. Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 °C target. Appl. Energy 2017, 207, 494–509. [Google Scholar] [CrossRef]
- Giurco, D.; McLellan, B.; Franks, D.M.; Nansai, K.; Prior, T. Responsible mineral and energy futures: Views at the nexus. J. Clean Prod. 2014, 84, 322–338. [Google Scholar] [CrossRef]
- De Koning, A.; Kleijn, R.; Huppes, G.; Sprecher, B.; Van Engelen, G.; Tukker, A. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 2018, 129, 202–208. [Google Scholar] [CrossRef]
- Kosai, S.; Nakanishi, M.; Yamasue, E. Vehicle Energy Efficiency Evaluation from Well-to Wheel Lifecycle Perspective. Transp. Res. D-Transp. Environ. 2018, 65, 355–367. [Google Scholar] [CrossRef]
- Jin, Y.; Kim, J.; Guillaume, B. Review of critical material studies. Resour. Conserv. Recycl. 2016, 113, 77–87. [Google Scholar] [CrossRef]
- Graedel, T.E.; Reck, B.K. Six Years of Criticality Assessments: What Have We Learned So Far? J. Ind. Ecol. 2015, 20, 692–699. [Google Scholar] [CrossRef]
- Dewulf, J.; Blengini, G.A.; Pennington, D.; Nuss, P.; Nassar, N.T. Criticality on the international scene: Quo vadis? Resour. Policy 2016, 50, 169–176. [Google Scholar] [CrossRef]
- Kolotzek, C.; Helbig, C.; Thorenz, A.; Reller, A.; Tuma, A. A company-oriented model for the assessment of raw material supply risks, environmental impact and social implications. J. Clean. Prod. 2018, 176, 566–580. [Google Scholar] [CrossRef]
- Achzet, B.; Helbig, C. How to evaluate raw material supply risk—An overview. Resour. Policy 2013, 38, 435–447. [Google Scholar] [CrossRef]
- Helbig, C.; Wietschel, L.; Thorenz, A.; Tuma, A. How to evaluate raw material vulnerability—An overview. Resour. Policy 2016, 48, 13–24. [Google Scholar] [CrossRef]
- Erdmann, L.; Graedel, T.E. Criticality of non-fuel minerals: a review of major approaches and analyses. Environ. Sci. Technol. 2011, 45, 7620–7630. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christoffersen, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N.T.; et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2012, 46, 1063–1070. [Google Scholar] [CrossRef]
- Nassar, N.T.; Barr, R.; Browning, M.; Diao, Z.; Friedlander, E.; Harper, E.M.; Henly, C.; Kavlak, G.; Kwatra, S.; Jun, C.; et al. Criticality of the Geological Copper Family. Environ. Sci. Technol. 2012, 46, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Nassar, N.T.; Du, X.; Graedel, T.E. Criticality of the Rare Earth Elements. J. Ind. Ecol. 2015, 19, 1044–1054. [Google Scholar] [CrossRef]
- Glöser, S.; Tercero Espinoza, L.; Grandenberger, C.; Faulstich, M. Raw material criticality in the context of classic risk assessment. Resour. Policy 2015, 44, 35–46. [Google Scholar] [CrossRef]
- Graedel, T.E.; Nuss, P. Employing Considerations of Criticality in Product Design. JOM 2014, 66, 2360–2366. [Google Scholar] [CrossRef]
- National Research Council (NRC). Mineral Critical Minerals and the U.S. Economy; Committee on Critical Mineral Impacts of the U.S. Economy: Washington, DC, USA, 2008.
- European Commission. Tracking the Challenges in Commodity Markets and on Raw Materials, COM; European Commission: Brussel, Belgium, 2011. [Google Scholar]
- Malinauskiene, M.; Kliopova, I.; Hugi, C.; Staniškis, J.K. Geostrategic Supply Risk and Economic Importance as Drivers for Implementation of Industrial Ecology Measures in a Nitrogen Fertilizer Production Company. J. Ind. Ecol. 2018, 22, 422–433. [Google Scholar] [CrossRef]
- Rosenau-Tornow, D.; Buchholz, P.; Riemann, A.; Wagner, M. Assessing the long-term supply risks for raw materials—A combined evaluation of past and future trends. Resour. Policy 2009, 34, 161–175. [Google Scholar] [CrossRef]
- Kosai, S.; Hashimoto, S.; Matsubae, K.; McLellan, B.; Yamasue, E. Comprehensive Analysis of External Dependency in terms of Material Criticality by Employing Total Material Requirement: Sulfuric Acid Production in Japan as a case study. Minerals 2018, 8, 114. [Google Scholar] [CrossRef]
- Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technology. Energ. Policy 2013, 55, 556–564. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Dittrich, M.; Pierducca, C. Coltan from Central Africa, international trade and implications for any certification. Resour. Policy 2012, 37, 19–29. [Google Scholar] [CrossRef]
- Mueller, S.R.; Wager, P.A.; Turner, D.A.; Shaw, P.; Williams, I.D. A framework for evaluating the accessibility of raw materials from end-of-life products and the Earth’s crust. Waste Manag. 2017, 68, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Rabe, W.; Kostka, G.; Smith Stegen, K. China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energ. Policy 2017, 101, 692–699. [Google Scholar] [CrossRef]
- Viebahn, P.; Soukup, O.; Samadi, S.; Teubler, J.; Wiesen, K.; Ritthoff, M. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energ. Rev. 2015, 49, 655–671. [Google Scholar] [CrossRef]
- Blengini, G.A.; Nuss, P.; Dewulf, J.; Nita, V.; Peirò, L.T.; Vidal-Legaz, B.; Latunussa, C.; Mancini, L.; Blagoeva, D.; Pennington, D.; Pellegrini, M.; Van Maercke, A.; Solar, S.; Grohol, M.; Ciupagea, C. EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements. Resour. Policy 2017, 53, 12–19. [Google Scholar] [CrossRef]
- Bach, V.; Finogenova, N.; Berger, M.; Winter, L.; Finkbeiner, M. Enhancing the assessment of critical resource use at the country level with the SCARCE method—Case study of Germany. Resour. Policy 2017, 53, 283–299. [Google Scholar] [CrossRef]
- Hatayama, H.; Tahara, K. Evaluating the sufficiency of Japan’s mineral resource entitlements for supply risk mitigation. Resour. Policy 2015, 44, 72–80. [Google Scholar] [CrossRef]
- Hatayama, H.; Tahara, K. Criticality Assessment of Metals for Japan’s Resource Strategy. Mater. Trans. 2015, 56, 229–235. [Google Scholar] [CrossRef]
- New Energy and Industrial Technology Development Organization (NEDO). Trend Report of Development in Materials for Substitution of Scarce Metals; Report No. 08007835-0 08007838-0; Shinko Research Co. Ltd.: Tokyo, Japan, 2009. [Google Scholar]
- Prime Minister of Japan and His Cabinet. Resource Securement Strategy; Prime Minister of Japan and His Cabinet: Tokyo, Japan, 2012; Available online: http://www.kantei.go.jp/jp/singi/package/dai15/sankou01.pdf (accessed on 27 April 2017).
- Ministry of Economy, Trade and Industry (METI). Long-Term Energy Supply Demand Outlook; Ministry of Economy, Trade and Industry: Tokyo, Japan, 2015. Available online: http://www.meti.go.jp/press/2015/07/20150716004/20150716004_2.pdf (accessed on 10 May 2018).
- Roelich, K.; Dawson, D.A.; Purnell, P.; Knoeri, C.; Revell, R.; Busch, J.; Steinberger, J.K. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity. Appl. Energy 2014, 123, 378–386. [Google Scholar] [CrossRef]
- Goe, M.; Gaustad, G. Identifying critical materials for photovoltaics in the US: A multi-metric approach. Appl. Energy 2014, 123, 387–396. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Kolotzek, C.; Thorenz, A.; Tuma, A. Supply risks associated with CdTe and CIGS thin-film photovoltaics. Appl. Energy 2016, 178, 422–433. [Google Scholar] [CrossRef]
- Habib, K.; Wenzel, H. Reviewing resource criticality assessment from a dynamic and technology specific perspective - using the case of direct-drive wind turbines. J. Clean. Prod. 2016, 112, 3852–3863. [Google Scholar] [CrossRef]
- European Commission. Critical Metals in the Path towards the Decarbonization of the EU Energy Sector; European Commission: Brussel, Belgium, 2013; Available online: https://setis.ec.europa.eu/sites/default/files/reports/JRC-report-Critical-Metals-Energy-Sector.pdf (accessed on 30 October 2018).
- Joint Research Centre (JRC). Critical Metals in Strategic Energy Technologies; Joint Research Centre: Brussel, Belgium, 2011; Available online: https://setis.ec.europa.eu/sites/default/files/reports/CriticalMetalsinStrategicEnergyTechnologies-def.pdf (accessed on 30 October 2018).
- Greijer, H.; Karlson, L.; Lindquist, S.; Hagfeldt, A. Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renew. Energy 2001, 23, 27–39. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). Minerals Yearbook Volume 1; U.S. Geological Survey: Washington, DC, USA, 2014. Available online: http://minerals.usgs.gov/minerals/pubs/myb.html (accessed on 10 November 2016).
- Nassar, N.T.; Graedel, T.E.; Harper, E.M. By-product metals are technologically essential but have problematic supply. Sci. Adv. 2015, 1, e1400180. [Google Scholar] [CrossRef] [PubMed]
- Fraser Institute. Annual Survey of Mining Companies; Fraser Institute: Vancouver, BC, Canada, 2015; Available online: https://www.fraserinstitute.org/studies/annual-survey-of-mining-companies-2015 (accessed on 15 November 2016).
- United Nations Development Programme. Human Development Data (1980-2015); United Nations Development Programme: New York, NY, USA, 2016; Available online: http://www.hdr.undp.org/en/data (accessed on 3 November 2016).
- The World Bank Group. Worldwide Governance Indicator; World Bank Group, 2016; Available online: http://info.worldbank.org/governance/wgi/index.aspx#home (accessed on 7 November 2016).
- United States Department of Justice and Federal Trade Commission. Commentary on the Horizontal Merger Guidelines; United States Department of Justice and Federal Trade Commission: Washington, DC, USA, 2006. Available online: https://www.justice.gov/atr/commentary-horizontal-merger-guidelines (accessed on 30 October 2018).
- Japan Oil, Gas and Metal National Corporation (JOGMEC). Mineral Resource Material Flow 2016; Japan Oil, Gas and Metal National Corporation: Tokyo, Japan, 2017. Available online: http://mric.jogmec.go.jp/wp-content/ebook/201801/5a5c093a/material_flow2016.pdf (accessed on 24 October 2018).
- Arum Publications. Industrial Rare Metals 131; Arum Publications: Tokyo, Japan, 2015; pp. 150–151. [Google Scholar]
- U.S. Geological Survey (USGS). Mineral Information; U.S. Geological Survey, 2017. Available online: https://minerals.usgs.gov/minerals/pubs/historical-statistics (accessed on 10 June 2018).
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Nuss, P.; Reck, B.K. Criticality of metals and metalloids. PNAS 2015, 112, 4257–4262. [Google Scholar] [CrossRef]
- Harper, E.M.; Kavlak, G.; Burmeister, L.; Eckelman, M.; Erbis, S.; Espinoza, V.S.; Nuss, P.; Graedel, T.E. Criticality of the Geological Zinc, Tin, and Lead Family. J. Ind. Ecol. 2015, 19, 4257–4262. [Google Scholar] [CrossRef]
- Nuss, P.; Harper, E.M.; Nassar, N.T.; Reck, B.K.; Graedel, T.E. Criticality of Iron and Its Principal Alloying Elements. Environ. Sci. Technol. 2014, 48, 4171–4177. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.M.; Diao, Z.; Panousi, S.; Nuss, P.; Eckelman, M.J.; Graedel, T.E. The criticality of four nuclear energy metal. Resour. Conserv. Recycl. 2015, 95, 193–201. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT-Forestry; Food and Agriculture Organization of the United Nations: Roma, Italy, 2014; Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 30 October 2018).
- Kosai, S.; Yamasue, E. Cost-Security Analysis Dedicated for the Off-grid Electricity System. Renew. Energy 2017. [Google Scholar] [CrossRef]
- Ang, B.W.; Choong, W.L.; Ng, T.S. Energy security: Definitions, dimensions and indexes. Renew. Sustain. Energ. Rev. 2015, 42, 1077–1093. [Google Scholar] [CrossRef]
- Nose, K.; Okabe, T. Current Status and Problems of Rare Metals. J. Surf. Finish. Soc. Jpn. 2012, 63, 618–624. (In Japanese) [Google Scholar] [CrossRef]
- Japan Oil, Gas and Metal National Corporation (JOGMEC). Mineral Resource Information; Japan Oil, Gas and Metal National Corporation: Tokyo, Japan, 2013. Available online: http://mric.jogmec.go.jp/news_flash/20130328/32662/ (accessed on 19 October 2018).
- Kosai, S.; Yamasue, E. Global warming potential and total material requirement in metal production: Identification of changes in environmental impact through metal substitution. Sci. Total Environ. 2019, 651, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
- Japan Oil, Gas and Metal National Corporation (JOGMEC). Mineral Resources Information; Japan Oil, Gas and Metal National Corporation: Tokyo, Japan, 2015. Available online: http://mric.jogmec.go.jp/wp-content/old_uploads/reports/resources-report/2015-05/vol45_No1_01_s.pdf (accessed on 21 October 2018).
- New Energy Externalities Developments for Sustainability (NEEDS). Final Report on Technical Data, Costs and Life Cycle Inventories of PV Applications; New Energy Externalities Developments for Sustainability: Schaffhausen, Switzerland, 2006; Available online: http://www.needs-project.org/RS1a/RS1a%20D11.2%20Final%20report%20on%20PV%20technology.pdf (accessed on 27 October 2018).
- Ministry of Economy, Trade and Industry (METI). Cabinet Decision on the New Strategic Energy Plan; Ministry of Economy, Trade and Industry: Tokyo, Japan, 2018. Available online: http://www.meti.go.jp/english/press/2018/pdf/0703_002c.pdf (accessed on 21 October 2018).
- Kosai, S.; Tan, C. Quantitative analysis on a zero energy building performance from energy trilemma perspective. Sustain. Cities Soc. 2017, 32, 130–141. [Google Scholar] [CrossRef]
- Organization for Economic Co-operation and Development (OECD). Handbook on Constructing Composite Indicators: Methodology and User Guide; Organization for Economic Co-operation and Development: Paris, France, 2008; Available online: http://www.oecd.org/sdd/42495745.pdf (accessed on 10 August 2015).
- Kosai, S.; Unesaki, H. Conceptualizing maritime security for energy transportation security. J. Transp. Secur. 2016, 9, 175–190. [Google Scholar] [CrossRef]
- Kabir, G.; Ahsan Akhtar Hasin, M. Multiple criteria inventory classification using fuzzy analytic hierarchy process. Int. J. Ind. Eng. Computations 2012, 3, 123–132. [Google Scholar] [CrossRef]
Required Metals | Hydro | Wind | Solar | Geo-Thermal | Biomass | Nuclear | LNG | Coal |
---|---|---|---|---|---|---|---|---|
Boron | ✓ | |||||||
Magnesium | ✓ | |||||||
Titanium | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Vanadium | ✓ | ✓ | ||||||
Chromium | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Manganese | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Cobalt | ✓ | ✓ | ✓ | |||||
Nickel | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Gallium | ✓ | |||||||
Selenium | ✓ | |||||||
Yttrium | ✓ | |||||||
Zirconium | ✓ | ✓ | ✓ | |||||
Niobium | ✓ | ✓ | ✓ | ✓ | ||||
Molybdenum | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Silver | ✓ | ✓ | ||||||
Indium | ✓ | ✓ | ||||||
Tellurium | ✓ | |||||||
Neodymium | ✓ | |||||||
Dysprosium | ✓ | |||||||
Hafnium | ✓ | |||||||
Tantalum | ✓ | ✓ | ✓ | |||||
Tungsten | ✓ | ✓ | ||||||
Lead | ✓ | ✓ | ✓ | |||||
Aluminum | ✓ | ✓ | ✓ | ✓ | ||||
Iron | ✓ | ✓ | ✓ | ✓ | ||||
Copper | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Zinc | ✓ | |||||||
Cadmium | ✓ | ✓ | ||||||
Tin | ✓ | ✓ | ✓ |
Study | Target Year | Dimensions | Elements | Critical Metals |
---|---|---|---|---|
This study | 2014 | Supply Risk/Vulnerability to Supply Restriction | 29 | In, Cd, Co, Se, Mn, Mg, Y, Zr, Dy |
NEDO [40] | 2007 | Supply Risk/Price Risk/Demand Risk/Recycle/Potential Risk | 36 | W, Nb, In, Nd, Dy, Y |
JOGMEC [70] | 2012 | Supply Risk/Economic importance | 41 | Nb, Dy(HREE1), W, Mg, Co, Cr |
Hatayama and Tahara [39] | 2012 | Supply Risk/Price Risk/Demand Risk/Recycle/Potential Risk/Reserve entitlements to demand | 22 | Nb, In, Nd, Dy |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyamoto, W.; Kosai, S.; Hashimoto, S. Evaluating Metal Criticality for Low-Carbon Power Generation Technologies in Japan. Minerals 2019, 9, 95. https://doi.org/10.3390/min9020095
Miyamoto W, Kosai S, Hashimoto S. Evaluating Metal Criticality for Low-Carbon Power Generation Technologies in Japan. Minerals. 2019; 9(2):95. https://doi.org/10.3390/min9020095
Chicago/Turabian StyleMiyamoto, Wataru, Shoki Kosai, and Seiji Hashimoto. 2019. "Evaluating Metal Criticality for Low-Carbon Power Generation Technologies in Japan" Minerals 9, no. 2: 95. https://doi.org/10.3390/min9020095
APA StyleMiyamoto, W., Kosai, S., & Hashimoto, S. (2019). Evaluating Metal Criticality for Low-Carbon Power Generation Technologies in Japan. Minerals, 9(2), 95. https://doi.org/10.3390/min9020095