Heavy Minerals for Junior Woodchucks
Abstract
:1. Introduction
What are Heavy Minerals?
2. Heavy Mineral Concentration
The Inner and Outer Messages
3. Passing through Scylla and Charybdis
3.1. What are We Sampling?
3.2. The Size-Window Problem
3.3. Beyond Grain Counting
4. Heavy Minerals as Provenance Tracers
4.1. Anorogenic Provenances
4.2. Magmatic Arcs
4.3. Axial Belts and Obducted Ophiolites
4.4. Mixed Orogenic Provenances
5. Environmental Bias: Turning Problems into Opportunities
5.1. Heavy Minerals as Tracers of Hydraulic Processes
5.2. Extracting Environmental and Provenance Information
6. Illusions, Shortcuts, and Logical Traps
6.1. How Could Zircon Be Enough?
6.2. Jumping to Conclusions: the Plausibility Trap
6.3. The Maturity Misconcept
7. The Chemical Moloch
7.1. Pre-Depositional and Post-Depositional Dissolution
7.2. Diagenetic Bias: What You See is not All There Was
7.3. How to Deal with Ancient Sandstones?
7.4. The Recycling Nightmare
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, 1283p. [Google Scholar]
- Morton, A.C. Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Sylvester, P., Ed.; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Quebec City, QC, Canada, 2012; Volume 42, pp. 133–165. [Google Scholar]
- von Eynatten, H.; Dunkl, I. Assessing the sediment factory: The role of single grain analysis. Earth-Sci. Rev. 2012, 115, 97–120. [Google Scholar] [CrossRef]
- Milliken, K.L. Provenance and diagenesis of heavy minerals, Cenozoic units of the northwestern Gulf of Mexico sedimentary basin. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 247–261. [Google Scholar]
- Garzanti, E.; Canclini, S.; Moretti Foggia, F.; Petrella, N. Unraveling magmatic and orogenic provenances in modern sands: The back-arc side of the Apennine thrust-belt (Italy). J. Sediment. Res. 2002, 72, 2–17. [Google Scholar] [CrossRef]
- Morton, A.C.; McGill, P. Correlation of hydrocarbon reservoir sandstones using heavy mineral provenance signatures: Examples from the North Sea and adjacent areas. Minerals 2019, 8, 564. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E. Raman spectroscopy in heavy-mineral studies. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society: London, UK, 2014; Special Publication 386; pp. 395–412. [Google Scholar]
- Hofstadter, D.R. The location of meaning. In Gödel, Escher, Bach: An Eternal Golden Braid; A Metaphorical Fugue on Minds and Machines in the Spirit of Lewis Carroll; Penguin Books: London, UK, 1979; Chapter VI; pp. 166–188. [Google Scholar]
- Garzanti, E.; Andò, S. Heavy-mineral concentration in modern sands: Implications for provenance interpretation. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 517–545. [Google Scholar]
- Garzanti, E.; Andò, S.; Scutellà, M. Actualistic ophiolite provenance: The Cyprus Case. J. Geol. 2000, 108, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Garzanti, E.; Vezzoli, G.; Andò, S. Modern sand from obducted ophiolite belts (Oman, U.A.E.). J. Geol. 2002, 110, 371–391. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Stability of detrital heavy minerals during burial diagenesis. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 215–245. [Google Scholar]
- Garzanti, E.; Al-Juboury, A.I.; Zoleikhaei, Y.; Vermeesch, P.; Jotheri, J.; Akkoca, D.B.; Allen, M.; Andò, S.; Limonta, M.; Padoan, M.; et al. The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth-Sci. Rev. 2016, 162, 107–128. [Google Scholar] [CrossRef] [Green Version]
- von Eynatten, H. Petrography and chemistry of sandstones from the Swiss Molasse Basin: An archive of the Oligocene to Miocene evolution of the Central Alps. Sedimentology 2003, 50, 703–724. [Google Scholar] [CrossRef]
- Garzanti, E.; Limonta, M.; Resentini, A.; Bandopadhyay, P.C.; Najman, Y.; Andò, S.; Vezzoli, G. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth-Sci. Rev. 2013, 123, 113–132. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. The Continental Crust as a Source of Sand (Southern Alps cross-section, Northern Italy). J. Geol. 2006, 114, 533–554. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; France-Lanord, C.; Vezzoli, G.; Najman, Y. Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth Planet. Sci. Lett. 2010, 299, 368–381. [Google Scholar] [CrossRef]
- Gazzi, P. On the heavy mineral zones in the geosyncline series, recent studies in the Northern Appennines, Italy. J. Sediment. Petrogr. 1965, 35, 109–115. [Google Scholar]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Malusà, M.G.; Garzanti, E. The sedimentology of detrital thermochronology. In Fission-track Thermochronology and Its Application to Geology; Malusà, M.G., Fitzgerald, P.G., Eds.; Springer: Berlin, Germany, 2019; pp. 123–143. [Google Scholar]
- Resentini, A.; Malusà, M.G.; Garzanti, E. MinSORTING: An Excel(R) worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Comput. Geosci. 2013, 59, 90–97. [Google Scholar] [CrossRef]
- Vermeesch, P.; Rittner, M.; Petrou, E.; Omma, J.; Mattinson, C.; Garzanti, E. High throughput petrochronology and sedimentary provenance analysis by automated phase mapping and LAICPMS. Geochem. Geophys. Geosystems 2017, 18, 4096–4109. [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A.; Andò, S.; Vezzoli, G.; Vermeesch, P. Physical controls on sand composition and relative durability of detrital minerals during long-distance littoral and eolian transport (coastal Namibia). Sedimentology 2015, 62, 971–996. [Google Scholar] [CrossRef]
- Carver, R.E. Heavy-mineral separation. In Procedures in Sedimentary Petrology; Carver, R.E., Ed.; Wiley: New York, NY, USA, 1971; pp. 427–452. [Google Scholar]
- Morton, A.C. Heavy minerals in provenance studies. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO-ASI Series; Springer: Dordrecht, The Netherlands, 1985; Volume 148, pp. 249–277. [Google Scholar]
- Bateman, R.M.; Catt, J.A. Provenance and palaeoenvironmental interpretation of superficial deposits, with particular reference to post-depositional modification of heavy-mineral assemblages. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 151–188. [Google Scholar]
- Rubey, W.W. The size-distribution of heavy minerals within a water-laid sandstone. J. Sediment. Petrol. 1933, 3, 3–29. [Google Scholar]
- Rittenhouse, G. Transportation and deposition of heavy minerals. Geol. Soc. Am. Bull. 1943, 54, 1725–1780. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour; Chapman and Hall: London, UK, 1992; 147p. [Google Scholar]
- Garzanti, E.; Andò, S.; Vezzoli, G. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett. 2009, 277, 422–432. [Google Scholar] [CrossRef]
- Parfenoff, A.; Pomerol, C.; Tourenq, J. Les minéraux en grains—méthodes d’ étude et détermination; Masson: Paris, France, 1970; 578p. [Google Scholar]
- Galehouse, J.S. Point counting. In Procedures in Sedimentary Petrology; Carver, R.E., Ed.; Wiley: New York, NY, USA, 1971; pp. 385–407. [Google Scholar]
- Berman, R. A nomogram for obtaining per cent composition by weight from mineral-grain counts. J. Sediment. Petrol. 1953, 23, 120–123. [Google Scholar]
- Garzanti, E.; Andò, S.; Vezzoli, G. Settling-equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet. Sci. Lett. 2008, 273, 138–151. [Google Scholar] [CrossRef]
- Hunter, R. E A rapid method for determining weight percentages of unsieved heavy minerals. J. Sediment. Petrol. 1967, 37, 521–529. [Google Scholar]
- Galehouse, J.S. Counting grain mounts; number percentage vs. number frequency. J. Sediment. Petrol. 1969, 39, 812–815. [Google Scholar] [CrossRef]
- Chayes, F. The theory of thin-section analysis. J. Geol. 1954, 62, 92–101. [Google Scholar] [CrossRef]
- Dewey, J.F. Orogeny can be very short. Proc. Natl. Acad. Sci. USA 2005, 102, 15286–15293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone composition. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2164–2172. [Google Scholar]
- Garzanti, E. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment. Geol. 2016, 336, 3–13. [Google Scholar] [CrossRef]
- Garzanti, E. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 2019. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Plate tectonics and heavy-mineral suites of modern sands. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 741–763. [Google Scholar]
- Garzanti, E.; Vezzoli, G.; Andò, S.; Castiglioni, G. Petrology of rifted-margin sand (Red Sea and Gulf of Aden, Yemen). J. Geol. 2001, 109, 277–297. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Andò, S.; Resentini, A.; Vezzoli, G.; Lustrino, M. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. J. Geol. 2013, 121, 547–580. [Google Scholar] [CrossRef]
- Garzanti, E.; Vermeesch, P.; Padoan, M.; Resentini, A.; Vezzoli, G.; Andò, S. Provenance of passive-margin sand (Southern Africa). J. Geol. 2014, 122, 17–42. [Google Scholar] [CrossRef]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO-ASI Series; Springer: Dordrecht, The Netherlands, 1985; Series 148; pp. 333–361. [Google Scholar]
- Marsaglia, K.M.; Ingersoll, R.V. Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geol. Soc. Am. Bull. 1992, 104, 1637–1649. [Google Scholar] [CrossRef]
- Garzanti, E.; Limonta, M.; Vezzoli, G.; An, W.; Wang, J.; Hu, X. Petrology and multimineral fingerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet). In Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson’s Career; Ingersoll, R.V., Lawton, T.F., Graham, S.A., Eds.; Geological Society of America: Boulder, CO, USA, 2019; Special Paper 540; pp. 197–221. [Google Scholar]
- Gill, J. Orogenic Andesites and Plate Tectonics; Springer: Berlin, Germany, 1981; 390p. [Google Scholar]
- Garzanti, E.; Doglioni, C.; Vezzoli, G.; Andò, S. Orogenic Belts and Orogenic Sediment Provenances. J. Geol. 2007, 115, 315–334. [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A.; Vezzoli, G.; Andò, S.; Malusà, M.G.; Padoan, M.; Paparella, P. Detrital fingerprints of fossil continental-subduction zones (Axial Belt Provenance, European Alps). J. Geol. 2010, 118, 341–362. [Google Scholar] [CrossRef]
- Doglioni, C.; Harabaglia, P.; Merlini, S.; Mongelli, F.; Peccerillo, A.; Piromallo, C. Orogens and slabs vs. their direction of subduction. Earth Sci. Rev. 1999, 45, 167–208. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Vezzoli, G.; Lombardo, B.; Andò, S.; Mauri, E.; Monguzzi, S.; Russo, M. Collision-orogen Provenance (Western and Central Alps): Detrital signatures and unroofing trends. J. Geol. 2004, 112, 145–164. [Google Scholar] [CrossRef]
- Morton, A.C.; Johnsson, M.J. Factors influencing the composition of detrital heavy mineral suites in Holocene sands of the Apure River drainage basin, Venezuela. Geol. Soc. Am. Spec. Pap. 1993, 284, 171–185. [Google Scholar]
- Limonta, M.; Garzanti, E.; Resentini, A.; Andò, S.; Boni, M.; Bechstädt, T. Multicyclic sediment transfer along and across convergent plate boundaries (Barbados, Lesser Antilles). Basin Res. 2015, 27, 696–713. [Google Scholar] [CrossRef]
- Gazzi, P.; Zuffa, G.G.; Gandolfi, G.; Paganelli, L. Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell’ Isonzo e del Foglia: Inquadramento regionale. Mem. Soc. Geol. Ital. 1973, 12, 1–37. [Google Scholar]
- Komar, P.D. The entrainment, transport and sorting of heavy minerals by waves and currents. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 3–48. [Google Scholar]
- Trask, C.B.; Hand, B.M. Differential transport of fall-equivalent sand grains, Lake Ontario, New York. J. Sedim. Petrol. 1985, 55, 226–234. [Google Scholar]
- Slingerland, R.; Smith, N.D. Occurrence and formation of water-laid placers. Ann. Rev. Earth Planet. Sci. 1986, 14, 113–147. [Google Scholar] [CrossRef]
- Garzanti, E.; Dinis, P.; Vermeesch, P.; Andò, S.; Hahn, A.; Huvi, J.; Limonta, M.; Padoan, M.; Resentini, A.; Rittner, M.; et al. Sedimentary processes controlling ultralong cells of littoral transport: Placer formation and termination of the Orange sand highway in southern Angola. Sedimentology 2018, 65, 431–460. [Google Scholar] [CrossRef]
- Cheng, N.S. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng. 1997, 123, 149–152. [Google Scholar] [CrossRef]
- Komar, P.D.; Li, Z. Application of grain-pivoting and sliding analyses to selective entrainment of gravel and to flow-competence evaluations. Sedimentology 1988, 35, 681–695. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Padoan, M.; Vezzoli, G.; El Kammar, A. The modern Nile sediment system: Processes and products. Quat. Sci. Rev. 2015, 130, 9–56. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Vermeesch, P.; Al-Ramadan, K.A.; Andò, S.; Limonta, M.; Rittner, M.; Vezzoli, G. Tracing transcontinental sand transport: From Anatolia-Zagros to the Rub’ al Khali Sand Sea. J. Sediment. Res. 2017, 87, 1196–1213. [Google Scholar] [CrossRef]
- Resentini, A.; Andò, S.; Garzanti, E. Quantifying roundness of detrital minerals by image analysis: Sediment transport, shape effects, and provenance implications. J. Sediment. Res. 2018, 88, 276–289. [Google Scholar] [CrossRef]
- Mackie, W. On the laws that govern the rounding of particles of sand. Trans. Edinb. Geol. Soc. 1897, 7, 298–311. [Google Scholar] [CrossRef]
- Marsland, P.S.; Woodruff, J.G. A study of the effects of wind transportation on grains of several minerals. J. Sediment. Petrol. 1937, 7, 18–30. [Google Scholar]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Co.: Austin, TX, USA, 1980; 182p. [Google Scholar]
- Berkey, C.P. Paleogeography of Saint Peter time. Geol. Soc. Am. Bull. 1906, 17, 229–250. [Google Scholar] [CrossRef]
- Dott, R.H. The importance of eolian abrasion in supermature quartz sandstones and the paradox of weathering on vegetation-free landscapes. J. Geol. 2003, 111, 387–405. [Google Scholar] [CrossRef]
- Twenhofel, W.H. The rounding of sand grains. J. Sediment. Petrol. 1945, 15, 59–71. [Google Scholar] [CrossRef]
- Kuenen, P.H. Experimental abrasion: 4, Eolian action. J. Geol. 1960, 68, 427–449. [Google Scholar] [CrossRef]
- Russell, R.D. Mineral composition of Mississippi River sands. Geol. Soc. Am. Bull. 1937, 48, 1307–1348. [Google Scholar] [CrossRef]
- Weltje, G.J. A quantitative approach to capturing the compositional variability of modern sands. Sediment. Geol. 2004, 171, 59–77. [Google Scholar] [CrossRef]
- Malusà, M.G.; Carter, A.; Limoncelli, M.; Villa, I.M.; Garzanti, E. Bias in detrital zircon geochronology and thermochronometry. Chem. Geol. 2013, 359, 90–107. [Google Scholar] [CrossRef]
- Vezzoli, G.; Garzanti, E.; Limonta, M.; Andó, S.; Yang, S. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology 2016, 261, 177–192. [Google Scholar] [CrossRef]
- Moecher, D.P.; Samson, S.D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth Planet. Sci. Lett. 2006, 247, 252–266. [Google Scholar] [CrossRef]
- Dickinson, W.R. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett. 2008, 275, 80–92. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J. Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochem. Geophys. Geosystems 2012, 13, Q05007. [Google Scholar] [CrossRef]
- Malusà, M.G.; Resentini, A.; Garzanti, E. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res. 2016, 31, 1–19. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Penguin: London, UK, 2011; 499p. [Google Scholar]
- Garzanti, E.; Vermeesch, P.; Andó, S.; Vezzoli, G.; Valagussa, M.; Allen, K.; Khadi, K.A.; Al-Juboury, I.A. Provenance and recycling of Arabian desert sand. Earth-Sci. Rev. 2013, 120, 1–19. [Google Scholar] [CrossRef]
- Andersen, T.; Kristoffersen, M.; Elburg, M.A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study. Gondwana Res. 2016, 34, 129–148. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, The Crust; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Vail, P.R.; Mitchum, R.M., Jr.; Thompson, S., III. Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap. In Seismic Stratigraphy—Applications to Hydrocarbon Exploration; Payton, C.E., Ed.; American Association of Petroleum Geologists: San Antonio, TX, USA, 1977; Memoir 26; pp. 63–81. [Google Scholar]
- Haq, B.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- Ager, D. More gaps than record. In The Nature of the Stratigraphical Record; Halsted Press, Wiley: New York, NY, USA, 1971; Chapter 3; pp. 28–35. [Google Scholar]
- Miall, C.E.; Miall, A.D. The Exxon factor: The roles of corporate and academic science in the emergence and legitimation of a new global model of sequence stratigraphy. Sociol. Q. 2002, 43, 307–334. [Google Scholar] [CrossRef]
- Pitman, W.C.; Golovchenko, X. The Effect of Sealevel Change on the Shelfedge and Slope of Passive Margins; Society of Economic Paleontologists and Mineralogists: Broken Arrow, OK, USA, 1983; Special Publication 33; pp. 41–58. [Google Scholar]
- Dewey, J.F.; Pitman, W.C. Sea-level changes: Mechanisms, magnitudes and rates. In Paleogeographic Evolution and Non-Glacial Eustasy, Northern South America; Pindell, J.L., Drake, C., Eds.; Society of Economic Paleontologists and Mineralogists: Broken Arrow, OK, USA, 1998; Special Publication 58; pp. 1–16. [Google Scholar]
- Miall, A.D. Eustatic sea level changes interpreted from seismic stratigraphy: A critique of the methodology with particular reference to the North Sea Jurassic record. Am. Assoc. Pet. Geol. Bull. 1986, 70, 131–137. [Google Scholar]
- Miall, A.D. Exxon global cycle chart: An event for every occasion? Geology 1992, 20, 787–790. [Google Scholar] [CrossRef]
- Paola, C.; Leeder, M. Environmental dynamics: Simplicity versus complexity. Nature 2011, 469, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Arreguin-Toft, I. How the weak win wars: A theory of asymmetric conflict. Int. Secur. 2001, 26, 93–128. [Google Scholar] [CrossRef]
- Shukri, N.M. The mineralogy of some Nile sediments: Geological Society of London. Q. J. 1950, 105, 511–534. [Google Scholar]
- Kuenen, P.H. Experimental abrasion: 3. Fluviatile action on sand. Am. J. Sci. 1959, 257, 172–190. [Google Scholar] [CrossRef]
- Gould, S.J. Dinomania. N. Y. Rev. Books 1993, 40, 52–53. [Google Scholar]
- Popper, K. Historicism and the myth of destiny. In The Open Society and Its Enemies; Princeton University Press: Princeton, NJ, USA, 1994; pp. 7–9. [Google Scholar]
- Folk, R.L. Stages of textural maturity in sedimentary rocks. J. Sediment. Petrol. 1951, 21, 127–130. [Google Scholar] [CrossRef]
- Hubert, J.F. A zircon–tourmaline–rutile maturity index and the interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones. J. Sediment. Petrol. 1962, 32, 440–450. [Google Scholar]
- Muhs, D.R. Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology 2004, 59, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Cavazza, W.; Zuffa, G.G.; Camporesi, C.; Ferretti, C. Sedimentary recycling in a temperate climate drainage basin (Senio River, north-central Italy): Composition of source rock, soil profiles, and fluvial deposits. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; Special Paper 284; pp. 247–262. [Google Scholar]
- Fontana, D.; Parea, G.C.; Bertacchini, M.; Bessi, P. Sand production by chemical and mechanical weathering of well lithified siliciclastic turbidites of the Northern Apennines (Italy). Memorie Descrittive della Carta Geologica d’Italia 2003, 61, 51–60. [Google Scholar]
- Avigad, D.; Sandler, A.; Kolodner, K.; Stern, R.J.; McWilliams, M.O.; Miller, N.; Beyth, M. Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes. Environmental implications. Earth Planet. Sci. Lett. 2005, 240, 818–826. [Google Scholar] [CrossRef]
- Garzanti, E. The maturity myth in sedimentology and provenance analysis. J. Sediment. Res. 2017, 87, 353–365. [Google Scholar] [CrossRef]
- Goldich, S.S. A study in rock-weathering. J. Geol. 1938, 46, 17–58. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 1996, 43, 341–358. [Google Scholar] [CrossRef]
- Potter, P.E.; Huh, Y.; Edmond, J.M. Deep-freeze petrology of Lena River sand, Siberia. Geology 2001, 29, 999–1002. [Google Scholar] [CrossRef]
- Johnsson, M.J.; Stallard, R.F.; Meade, R.H. First-cycle quartz arenites in the Orinoco River basin: Venezuela and Colombia. J. Geol. 1988, 96, 263–277. [Google Scholar] [CrossRef]
- van Loon, A.J.; Mange, A.M. “In situ” dissolution of heavy minerals through extreme weathering, and the application of the surviving assemblages and their dissolution characteristics to correlation of Dutch and German silver sands. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 189–213. [Google Scholar]
- Carroll, D. Weatherability of zircon. J. Sediment. Res. 1953, 23, 106–116. [Google Scholar]
- Colin, F.; Alarcon, C.; Vieillard, P. Zircon: An immobile index in soils? Chem. Geol. 1993, 107, 273–276. [Google Scholar] [CrossRef]
- Crook, K.A.W. Weathering and roundness of quartz sand grains. Sedimentology 1968, 11, 171–182. [Google Scholar] [CrossRef]
- Cleary, W.J.; Conolly, J.R. Distribution and genesis of quartz in a piedmont-coastal plain environment. Geol. Soc. Am. Bull. 1971, 82, 2755–2766. [Google Scholar] [CrossRef]
- Schulz, M.S.; White, A.F. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: Quartz dissolution rates. Geochim. Et Cosmochim. Acta 1999, 63, 337–350. [Google Scholar] [CrossRef]
- Steensen, N. De Solido Intra Solidum Naturaliter Contento Dissertationis Prodromus; ex Typographia sub signo Stellae: Florentiae, Italy, 1669; 78p. [Google Scholar]
- Chanvry, E.; Andò, S.; Garzanti, E.; Guillocheau, F.; Dall’Asta, M.; Beaufort, D.; Mas, P.P. Impact of hinterland evolution in mineralogy of clastic sediments: First results from mineralogical analysis focused on the Zambezi system during Meso-Cenozoic times. In Proceedings of the EGU General Assembly 2018, Vienna, Austria, 8–13 April 2018. Geophysical Research Abstracts, 20, EGU2018-18077. [Google Scholar]
- Garzanti, E.; Andò, S.; Limonta, M.; Fielding, L.; Najman, Y. Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): Implications for provenance reconstructions. Earth-Sci. Rev. 2018, 185, 122–139. [Google Scholar] [CrossRef]
- Riad, S.; Abdelrahman, E.M.; Refai, E.; El-Ghalban, H.M. Geothermal studies in the Nile Delta, Egypt. J. Afr. Earth Sci. 1989, 9, 637–649. [Google Scholar] [CrossRef]
- Sharp, J.M.; Galloway, W.E.; Land, L.S.; McBride, E.F.; Blanchard, P.E.; Bodner, D.P.; Dutton, S.P.; Farr, M.R.; Gold, P.B.; Jackson, T.J.; et al. Diagenetic processes in Northwest Gulf of Mexico sediments. In Diagenesis II; Chilingarian, G.V., Wolf, K.H., Eds.; Developments in Sedimentology Series; Elsevier: Amsterdam, The Netherlands, 1988; Volume 43, pp. 43–133. [Google Scholar]
- Evans, T.R.; Coleman, N.C. North Sea geothermal gradients. Nature 1974, 247, 28–30. [Google Scholar] [CrossRef]
- Smyth, H.R.; Morton, A.; Richardson, N.; Scott, R.A. Sediment provenance studies in hydrocarbon exploration and production: An introduction. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society: London, UK, 2014; Special Publication 386; pp. 1–6. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Velbel, M.A. Formation of protective surface layers during silicate-mineral weathering under well-leached, oxidizing conditions. Am. Mineral. 1993, 78, 405–414. [Google Scholar]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Meinhold, G. Rutile and its applications in Earth sciences. Earth-Sci. Rev. 2010, 102, 2–28. [Google Scholar] [CrossRef]
- Hu, X.; An, W.; Wang, J.; Garzanti, E.; Guo, R. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics 2014, 621, 60–68. [Google Scholar] [CrossRef]
- Malusà, M.G.; Wang, J.; Garzanti, E.; Liu, Z.C.; Villa, I.M.; Wittmann, H. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos 2017, 290–291, 48–59. [Google Scholar]
- Krippner, A.; Meinhold, G.; Morton, A.C.; von Eynatten, H. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sediment. Geol. 2014, 306, 36–52. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of heavy minerals. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 345–391. [Google Scholar]
- Andò, S.; Morton, A.; Garzanti, E. Metamorphic grade of source rocks revealed by chemical fingerprints of detrital amphibole and garnet. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society: London, UK, 2017; Special Publication 386; pp. 351–371. [Google Scholar]
- Borges, J.L. La escritura del dios. Sur 1949, 172, 7–12. [Google Scholar]
- Turing, A. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. 1952, 237, 37–72. [Google Scholar] [Green Version]
- Liu, R.T.; Liaw, S.S.; Maini, P.K. Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Phys. Rev. 2006, E 74, 0011914. [Google Scholar]
- Dougoud, M.; Mazza, C.; Schwaller, B.; Pecze, L. The phenomenon of growing surface interference explains the rosette pattern of jaguar. arXiv 2017, arXiv:1711.05574. [Google Scholar]
Mineral Index | Greenschist Facies | Amphibolite Facies | Granulite Facies | |||
---|---|---|---|---|---|---|
Lower | Middle | Upper | Metasediments | Metagabbro | ||
Hornblende Colour Index | - | ≤10 | 10–30 | 30–60 | >60 | ≥90 |
Metasedimentary Mineral Index | 0 | 50 | 75 | 100 | 100 | - |
Sillimanite Index | - | - | 0 | ≤30 | >80 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzanti, E.; Andò, S. Heavy Minerals for Junior Woodchucks. Minerals 2019, 9, 148. https://doi.org/10.3390/min9030148
Garzanti E, Andò S. Heavy Minerals for Junior Woodchucks. Minerals. 2019; 9(3):148. https://doi.org/10.3390/min9030148
Chicago/Turabian StyleGarzanti, Eduardo, and Sergio Andò. 2019. "Heavy Minerals for Junior Woodchucks" Minerals 9, no. 3: 148. https://doi.org/10.3390/min9030148
APA StyleGarzanti, E., & Andò, S. (2019). Heavy Minerals for Junior Woodchucks. Minerals, 9(3), 148. https://doi.org/10.3390/min9030148