Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment
Abstract
:1. Introduction
2. Gold–(Silver) Tellurides in Nature and Their Alteration
3. Mineral Replacement Reactions of Gold–(Silver) Tellurides in the Presence of Fluids
3.1. Product Textures
3.2. Reaction Mechanism
4. Applications and Implications
5. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shackleton, J.M.; Spry, P.G.; Bateman, R. Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can. Miner. 2003, 41, 1503–1524. [Google Scholar] [CrossRef]
- Kelley, K.D.; Romberger, S.B.; Beaty, D.W.; Pontius, J.A.; Snee, L.W.; Stein, H.J.; Thompson, T.B. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado. Econ. Geol. 1998, 93, 981–1012. [Google Scholar] [CrossRef]
- Ahmad, M.; Solomon, M.; Walshe, J.L. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji. Econ. Geol. 1987, 82, 234–270. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Spry, P.G.; Voudouris, P.; the participants of IGCP-486. Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes 2009, 32, 249–263. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Capraru, N.; Damian, G.; Cristea, P. Mineral assemblages from the vein salband at Sacarimb, Golden Quadrilateral, Romania: II. Tellurides. Geochem. Miner. Petrol. 2005, 43, 56–63. [Google Scholar]
- Tran, M.D.; Liu, J.L.; Hu, J.J.; Zou, Y.X.; Zhang, H.Y. Discovery and geological significance of Sandaowanzi telluride type gold deposit in the northern Daxing’anling, Heilongjiang, China. Geol. Bull. China 2008, 27, 584–589. [Google Scholar]
- Liu, J.L.; Bai, X.D.; Zhao, S.J.; Tran, M.D.; Zhang, Z.C.; Zhao, Z.D.; Zhao, H.B.; Lu, J. Geology of the Sandaowanzi telluride gold deposit of the northern Great Xing’an Range, NE China: Geochronology and tectonic controls. J. Asian Earth Sci. 2011, 41, 107–118. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhao, S.J.; Cook, N.J.; Bai, X.D.; Zhang, Z.C.; Zhao, Z.D.; Zhao, H.B.; Lu, J. Bonanza-grade accumulations of gold tellurides in the Early Cretaceous Sandaowanzi deposit, northeast China. Ore Geol. Rev. 2013, 54, 110–126. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, J. Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: Implications for phase equilibrium and physicochemical conditions. Miner. Petrol. 2014, 108, 853–871. [Google Scholar] [CrossRef]
- Cabri, L.J. Phase relations in the Au-Ag-Te system and their mineralogical significance. Econ. Geol. 1965, 60, 1569–1605. [Google Scholar] [CrossRef]
- Bindi, L.; Arakcheeva, A.; Chapuis, G. The role of silver on the stabilization of the incommensurately modulated structure in calaverite, AuTe2. Am. Miner. 2009, 94, 728–736. [Google Scholar] [CrossRef]
- Dye, M.D.; Smyth, J.R. The crystal structure and genesis of krennerite, Au3AgTe8. Can. Miner. 2012, 50, 363–371. [Google Scholar] [CrossRef]
- Van Tendeloo, G.; Amelinckx, S.; Gregoriades, P. Electron microscopic studies of modulated structures in (Au, Ag) Te2: III. Krennerite. J. Solid State Chem. 1984, 53, 281–289. [Google Scholar] [CrossRef]
- Smith, G.F.H. On the remarkable problem presented by crystalline development of calaverite. Miner. Mag. 1901, 13, 122–150. [Google Scholar]
- Mineral Database. Available online: http://webmineral.com/data/ (accessed on 8 March 2019).
- Zhao, J.; Xia, F.; Pring, A.; Brugger, J.; Grundler, P.V.; Chen, G. A novel pre-treatment of calaverite by hydrothermal mineral replacement reactions. Miner. Eng. 2010, 23, 451–453. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Xia, F.; Ngothai, Y.; Chen, G.; Pring, A. Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. Am. Miner. 2013, 98, 19–32. [Google Scholar] [CrossRef]
- Kongolo, K.; Mwema, M.D. The extractive metallurgy of gold. Hyperfine Interact. 1998, 111, 281–289. [Google Scholar] [CrossRef]
- Grosse, A.C.; Dicinoski, G.W.; Shaw, M.J.; Haddad, P.R. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review). Hydrometallurgy 2003, 69, 1–21. [Google Scholar] [CrossRef]
- Hodge, A.M.; Hayes, J.R.; Caro, J.A.; Biener, J.; Hamza, A.V. Characterization and Mechanical Behavior of Nanoporous Gold. Adv. Eng. Mater. 2006, 8, 853–857. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Damian, G.H.; Damian, F.L.; Buia, G. Telluride and sulphosalt associations at Scrâmb. In Gold-Silver-Telluride Deposits of the Golden Quadrilateral, South Apuseni Mts; IAGOD: Alba Iulia, Romania, 2004; Volume 12, pp. 145–186. [Google Scholar]
- Wilson, A.F. Origin of quartz-free gold nuggets and supergene gold found in laterites and soils—A review and some new observations. Aust. J. Earth Sci. 1984, 31, 303–316. [Google Scholar]
- Tolstykh, N.; Vymazalova, A.; Tuhy, M.; Shapovalova, M. Conditions of formation of Au-Se-Te mineralization in the Gaching ore occurrence (Maletoyvayam ore field), Kamchatka, Russia. Miner. Mag. 2018, 82, 649–674. [Google Scholar] [CrossRef]
- Petersen, S.B.; Makovicky, E.; Li, J.L.; Rose-Hansen, J. Mustard gold from the Dongping Au–Te deposit, Hebei Province, People’s Republic of China. Neues Jahrb. Mineral. Mon. 1999, 8, 337–357. [Google Scholar]
- Li, J.L.; Makovicky, E. New studies on mustard gold from the Dongping Mines, Hebei Province, China: The tellurian, plumbian, manganoan, and mixed varieties. Neues Jahrb. Mineral. Abh. 2001, 176, 269–297. [Google Scholar]
- Palache, C.; Berman, H.; Frondel, C. Dana’s System of Mineralogy I; Wiley: New York, NY, USA, 1944. [Google Scholar]
- Andreeva, E.D.; Matsueda, H.; Okrugin, V.M.; Takahashi, R.; Ono, S. Au–Ag–Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia. Resour. Geol. 2013, 63, 337–349. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Grundler, P.V.; Xia, F.; Chen, G.; Pring, A. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. Am. Miner. 2009, 94, 1541–1555. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Brugger, J.; Chen, G.; Pring, A. Mechanism of mineral transformations in krennerite, Au3AgTe8, under hydrothermal conditions. Am. Miner. 2013, 98, 2086–2095. [Google Scholar] [CrossRef]
- Okrugin, V.M.; Andreeva, E.; Etschmann, B.; Pring, A.; Li, K.; Zhao, J.; Griffiths, G.; Lumpkin, G.R.; Triani, G.; Brugger, J. Microporous gold: Comparison of textures from Nature and experiments. Am. Miner. 2014, 99, 1171–1174. [Google Scholar] [CrossRef]
- Markham, W.L. Synthetic and natural phases in the system Au–Ag–Te, Part 1 and 2. Econ. Geol. 1960, 55, 1148–1178. [Google Scholar] [CrossRef]
- Legendre, B.; Souleau, C.; Hancheng, C. Le système ternaire or-argent-tellure. Bulletin de al Société Chimique de France Partie 1980, 1, 197–204. (In French) [Google Scholar]
- Afifi, A.M.; Kelly, W.C.; Essene, E.J. Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibria; II. Applications to telluride-bearing ore deposits. Econ. Geol. 1988, 83, 377–394. [Google Scholar] [CrossRef]
- Zhang, X.; Spry, P.G. Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana. Econ. Geol. 1994, 89, 602–627. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, X.G.; Sundman, B.; Su, X.P. Thermodynamic reassessment of the Au-Te system. J. Alloys Compd. 2006, 407, 106–111. [Google Scholar] [CrossRef]
- McPhail, D.C. Thermodynamic properties of aqueous tellurium species between 25 and 350 °C. Geochim. Cosmochim. Acta 1995, 59, 851–866. [Google Scholar]
- Grundler, P.V.; Brugger, J.; Meisser, N.; Ansermet, S.; Borg, S.; Etschmann, B.; Testemale, D.; Bolin, T. Xocolatlite, Ca2Mn24+Te2O12∙H2O, a new tellurate related to kuranakhite: Description and measurement of Te oxidation state by XANES spectroscopy. Am. Miner. 2008, 93, 1911–1920. [Google Scholar] [CrossRef]
- Grundler, P.V.; Pring, A.; Brugger, J.; Spry, P.G.; Helm, L. Aqueous solubility and speciation of Te(IV) at elevated temperatures. Geochim. Cosmochim. Acta 2009, 73, A472. [Google Scholar]
- Grundler, P.V.; Brugger, J.; Etschmann, B.E.; Helm, L.; Liu, W.; Spry, P.G.; Tian, Y.; Testemale, D.; Pring, A. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim. Cosmochim. Acta 2013, 120, 298–325. [Google Scholar] [CrossRef]
- Putnis, A. Mineral replacement reactions. Rev. Mineral. Geochem. 2009, 70, 87–124. [Google Scholar] [CrossRef]
- Putnis, A.; Austrheim, H. Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral reequilibration. In Metasomatism and the Chemical Transformation of Rock; Harlov, D.E., Austrheim, H., Eds.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Altree-Williams, A.; Pring, A.; Ngothai, Y.; Brugger, J. Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials. Earth Sci. Rev. 2015, 150, 628–651. [Google Scholar] [CrossRef]
- Putnis, A.; Putnis, C.V. The mechanism of reequilibration of solids in the presence of a fluid phase. J. Solid State Chem. 2007, 180, 1783–1786. [Google Scholar] [CrossRef]
- Xia, F.; Brugger, J.; Chen, G.; Ngothai, Y.; O’Neill, B.; Putnis, A.; Pring, A. Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite. Geochim. Cosmochim. Acta 2009, 73, 1945–1969. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Chen, G.; Ngothai, Y.; Pring, A. Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: Mineral replacements with a large volume increase. Am. Miner. 2014, 99, 343–354. [Google Scholar] [CrossRef]
- Pollok, K.; Putnis, C.V.; Putnis, A. Mineral replacement reactions in solid solution-aqueous solution systems: Volume changes, reactions paths and end-points using the example of model salt systems. Am. J. Sci. 2011, 311, 211–236. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Putnis, C.V.; Putnis, A. Coupled dissolution and precipitation at mineral-fluid interfaces. Chem. Geol. 2014, 383, 132–146. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Grguric, B.A.; Ngothai, Y.; Pring, A. Fluid enhanced coarsening of mineral microstructures in hydrothermally synthesized bornite-digenite solid solution. ACS Earth Space Chem. 2017, 1, 465–474. [Google Scholar] [CrossRef]
- Li, K.; Brugger, J.; Pring, A. Exsolution of chalcopyrite from bornite-digenite solid solution: An example of a fluid-driven back-replacement reaction. Miner. Depos. 2018, 53, 903–908. [Google Scholar] [CrossRef]
- Zhao, J.; Brugger, J.; Ngothai, Y.; Pring, A. The replacement of chalcopyrite by bornite under hydrothermal conditions. Am. Miner. 2014, 99, 2389–2397. [Google Scholar] [CrossRef]
- Xia, F.; Brugger, J.; Ngothai, Y.; O’Neill, B.; Chen, G.; Pring, A. Three-dimensional ordered arrays of zeolite nanocrystals with uniform size and orientation by a pseudomorphic coupled dissolution-reprecipitation replacement route. Cryst. Growth Des. 2009, 9, 4902–4906. [Google Scholar] [CrossRef]
- Pertlik, F. Kristallchemie natürlicher Telluride I: Verfeinerung der Kristallstruktur des Sylvanits; AuAgTe4. Tschermaks Mineralogische und Petrographische Mitteilungen 1984, 33, 203–212. (In German) [Google Scholar] [CrossRef]
Mineral | Chemical Formula | Color | Density (g/cm3) | Hardness | Composition wt % | ||
---|---|---|---|---|---|---|---|
Au | Ag | Te | |||||
Calaverite | AuTe2 | Silver white to brassy yellow | 9.04 | 2.5–3 | 43.6 | 0 | 56.4 |
Krennerite | (Au1−x,Agx)Te2 | Silver white to blackish yellow | 8.53 | 2.5 | 43.6 | 0 | 56.4 |
Sylvanite | AuAgTe4 | Steely gray to silver gray | 7.9–8.3 (8.1) | 1.5–2 | 34.4 | 6.3 | 59.4 |
Muthmannite | (Ag,Au)Te2 | Blackish yellow, grayish white | - | 2.5 | 34.3 | 19.2 | 46.5 |
Petzite | Ag3AuTe2 | Bright steel gray to iron black | 8.7–9.14 | 2.5 | 25.4 | 41.7 | 32.9 |
Empressite | AgTe | Bronze, light bronze | 7.5–7.6 | 3.5 | 0 | 46.3 | 53.7 |
Stuetzite | Ag5−xTe3, (x = 0.24–0.36) | Gray, dark bronze | 8 | 3.5 | 0 | 57.0 | 43.0 |
Hessite | Ag2Te | Lead gray, steel gray | 7.2–7.9 | 1.5–2 | 0 | 62.8 | 37.2 |
Parent Mineral | Average Composition | Au:Ag:Te | Overall Reaction | Mechanism | Products | ΔVm * |
---|---|---|---|---|---|---|
Calaverite | Au0.94Ag0.05Te2.00 | 47:2.5:100 | Calaverite + 2 O2(aq) + 2 H2O → Au + 2 H2TeO3(aq) | CDR | Porous gold | −79.32% |
Sylvanite | Au0.63Ag0.36Te2.00 | 31.5:17.75:100 | Sylvanite + 2.07 O2(aq) + 1.87 H2O + 0.27 H+(aq) + 0.27 Cl− → 0.72 Au0.87Ag0.13 + 0.27 AgCl(aq) + 2 H2TeO3(aq) | CDR + exsolution | Porous Au–Ag alloy, Au0.87Ag0.13 Petzite, (Au0.92Ag3.15)Te2 Hessite, Ag1.89Au0.07Te Calaverite I, (Au0.78Ag0.22)Te1.74 Calaverite II, (Au0.93Ag0.07)Te2 | −84.92% |
Krennerite | Au0.82Ag0.18Te2.00 | 41:9:100 | Krennerite + 2.01 O2(aq) + 1.98 H2O + 0.04 H+(aq) + 0.04 Cl− → 0.96 Au0.85Ag0.15 + 0.04 AgCl(aq) + 2 H2TeO3(aq) | CDR | Porous Au–Ag alloy, Au0.85Ag0.15 | −80.19% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Pring, A. Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment. Minerals 2019, 9, 167. https://doi.org/10.3390/min9030167
Zhao J, Pring A. Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment. Minerals. 2019; 9(3):167. https://doi.org/10.3390/min9030167
Chicago/Turabian StyleZhao, Jing, and Allan Pring. 2019. "Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment" Minerals 9, no. 3: 167. https://doi.org/10.3390/min9030167
APA StyleZhao, J., & Pring, A. (2019). Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment. Minerals, 9(3), 167. https://doi.org/10.3390/min9030167