Measuring Copper, Lead and Zinc Concentrations and Oral Bioaccessibility as Part of the Soils in Scottish Schools Project
Abstract
:1. Introduction
- To provide Scotland’s school teachers with resources to enhance pupils’ understanding of the importance and fragility of the soil resource
- To carry out an investigation of levels and bioaccessibility of Cu, Pb and Zn in soils collected by pupils from school grounds.
- A teaching resource pack to help support a lesson about the chemistry of soil, i.e., a Powerpoint presentation, quiz, and worksheets detailing experiments suitable for the target age group (determination of soil composition and pH).
- A series of monthly newsletters with updates on the progress of the project, fun activities, and additional scientific information about soil.
- A soil sampling pack containing detailed instructions for collection of a soil sample from the school grounds, a sample bag, and a pre-paid envelope in which to post the sample to the university.
2. Materials and Methods
2.1. Sampling
2.2. Sample Pre-Treatment and General Characterisation
2.3. Pseudototal Digestion
2.4. Simplified Bioaccessibility Test (SBET) [36]
2.5. Analysis of Digests and Extracts
2.6. Reference Material Analysis
3. Results and Discussion
3.1. Pseudototal PTE Concentrations
- Group A: <10 miles from the centre of Glasgow (16 schools)
- Group B: 10–30 miles from the centre of Glasgow (11 schools)
- Group C: >30 miles from the centre of Glasgow (15 schools)
3.2. Bioaccessible PTE Concentrations
3.3. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, C.S.C.; Li, X.D.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.C.; Mak, N.K. Heavy metal pollution in children playgrounds in Hong Kong and its health implications. Environ. Toxicol. 1997, 18, 109–115. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz Cano, A.; Arocena, J.M.; Debela, F.; Martinez-Martinez, S. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma 2009, 149, 101–109. [Google Scholar] [CrossRef]
- Reis, A.P.; Patinha, C.; Wragg, J.; Dias, A.C.; Cave, M.; Sousa, A.J.; Batista, M.J.; Prazeres, C.; Costa, C.; Ferreira de Silva, E.; et al. Urban geochemistry of lead in gardens, playgrounds and schoolyards of Lisbon, Portugal: Assessing exposure and risk to human health. Appl. Geochem. 2014, 44, 45–53. [Google Scholar] [CrossRef]
- Mugosa, B.; Djurovic, D.; Pirnat, A.; Bulat, Z.; Barjaktarovic-Labovic, S. Children’s health risk assessment based on the content of toxic metals Pb, Cd, Cu and Zn in urban soil samples of Podgorica, Montenegro. Vojnosanit. Pregl. 2015, 72, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Sapcanin, A.; Cakal, M.; Jacimovic, Z.; Pehlic, E.; Jancan, G. Soil pollution fingerprints of children playgrounds in Sarajevo city, Bosnia and Herzegovina. Environ. Sci. Pollut. R. 2017, 24, 10949–10954. [Google Scholar] [CrossRef] [PubMed]
- Gredilla, A.; de Vallejuelo, S.F.O.; Gomez-Nubla, L.; Carrero, J.A.; de Leao, F.B.; Madariaga, J.M.; Silva, L.F.O. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ. Sci. Pollut. R. 2017, 24, 24333–24345. [Google Scholar] [CrossRef] [PubMed]
- Guney, M.; Zagury, G.J.; Dogan, N.; Onay, T.T. Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J. Hazard Mater. 2010, 182, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.P.; Camenzuli, D.; Kirstensen, L.J.; Forbes, M.; Zahran, S. Environmental lead exposure risks associated with children’s outdoor playgrounds. Environ. Pollut. 2013, 178, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Ajmone-Marsan, F.; Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- McIlwaine, R.; Doherty, R.; Cox, S.F.; Cave, M. The relationship between historical development and potentially toxic element concentrations in urban soils. Environ. Pollut. 2017, 220, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, R.T.; Alexander, J.; Langedal, M.; Haugland, T.; Hoygaard, E. Soil pollution in day-care centers and playgrounds in Norway: National action plan for mapping and remediation. Environ. Geochem. Health 2008, 30, 623–637. [Google Scholar] [CrossRef]
- Rozanski, S.L.; Kwasowski, W.; Castejon, J.M.P.; Hardy, A. Heavy metal content and mobility in urban soils of public playgrounds and sport facility areas, Poland. Chemosphere 2018, 212, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Grijalva, B.; Meza-Figueroa, D.; Romero, F.M.; Roble-Morua, A.; Meza-Montenegro, M.; Garcia-Rico, L.; Ochoa-Contreras, R. The role of soiL·mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Sci. Total Environ. 2019, 657, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Selinus, O.; Otabbong, E. Metals in soils of children’s urban environments in the small northern European city of Uppsala. Sci. Total Environ. 2006, 366, 749–759. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacon, E.; Ordonez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds of Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Marjanovic, M.D.; Vukcevic, M.M.; Antonovic, D.G.; Dimitrijevic, S.I.; Jovanovic, D.M.; Matavulj, M.N.; Ristic, M.D. Heavy metal concentration in soils from parks and green areas in Belgrade. J. Serb. Chem. Soc. 2009, 74, 697–706. [Google Scholar] [CrossRef]
- Massas, I.; Ehaliotis, C.; Kalivas, D.; Panagopoulou, G. Concentration and availability indicators of soil heavy metals; the case of children’s playgrounds in the City of Athens (Greece). Water Air Soil Pollut. 2010, 212, 51–63. [Google Scholar] [CrossRef]
- Figueirido, A.M.G.; Tocchini, M.; dos Santos, T.F.S. Metals in playground soils of Sao Paulo city, Brazil. Procedia Environ. Sci. 2011, 4, 303–309. [Google Scholar] [CrossRef]
- Mostert, M.M.R.; Ayoko, G.A.; Kokot, S. Multi-criteria ranking and source identification of metals in public playgrounds in Queensland, Australia. Geoderma 2012, 173–174, 173–183. [Google Scholar] [CrossRef]
- Kootbodien, T.; Mathee, A.; Naicker, N.; Moodley, N. Heavy metal contamination in a school vegetable garden in Johannesburg. S. Afr. Med. J. 2012, 102, 226–227. [Google Scholar] [PubMed]
- Glorennec, P.; Lucas, J.-P.; Mandin, C.; Le Bot, B. French children’s exposure to metals via ingestion of indoor dust, outdoor playgrounds dust and soil: Contamination data. Environ. Int. 2012, 45, 129–134. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Mingot, J.; Chacon, E.; Charlesworth, S. The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environ. Geochem. Health 2012, 34, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Elom, N.I.; Entwistle, J.A.; Dean, J.R. How safe is the playground? An environmental health risk assessment of As and Pb levels in school playing fields in NE England. Environ. Chem. Lett. 2013, 11, 343–351. [Google Scholar] [CrossRef]
- Tume, P.; King, R.; Gonzalez, E.; Bustamante, G.; Reverter, F.; Roca, N.; Bech, J. Trace element concentrations in schoolyard soils from the port city of Talcahuano. J. Geochem. Explor. 2014, 147, 229–236. [Google Scholar] [CrossRef]
- Hamad, S.H.; Schauer, J.J.; Shafer, M.M.; Al-Rheem, E.A.; Skaar, P.S.; Heo, J.; Tejedo-Tejedor, I. Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq. Sci. Total Environ. 2014, 494, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Stajic, J.M.; Milenkovic, B.; Pucarevic, M.; Stojic, N.; Vasiljevic, I.; Nikezic, D. Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac city, Central Serbia. Chemosphere 2016, 146, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Joy, O.; Uchenna, A. Accumulation and risk assessment of heavy metal contents in school playgrounds in Port Hardcourt Metropolis, Rivers State, Nigeria. J. Chem. Health Saf. 2017, 24, 11–22. [Google Scholar] [CrossRef]
- Akinwunmi, F.; Akinhanmi, T.F.; Atobatele, Z.A.; Adewole, O.; Odekunle, K.; Arogundade, L.A.; Odukoya, O.O.; Olayiwola, O.M.; Ademuyiwa, O. Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria. Environ. Toxicol. Pharmacol. 2017, 49, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Oroz, D.; Vidal, R.; Fernandoy, F.; Lambert, F.; Quiero, F. Metal concentrations and source identification in Chilean public children’s playgrounds. Environ. Monit. Assess. 2018, 190, 703. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Oomen, A.; Duits, M.; Selinus, O.; Berglund, M. Bioaccessibility of metals in urban playground soils. J. Environ. Sci. Health A 2007, 42, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Filippelli, G.M.; Adamic, J.; Nichols, D.; Shukle, J.; Frix, E. Mapping the urban lead exposome: A detailed analysis of soil metal concentrations at the household scale using citizen science. Int. J. Environ. Res. Public Health 2018, 15, 1531. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Aber, A.; Ravichandran, V.; Wright, L.; Muhammad, O. Soil contamination in urban communities impacted by industrial pollution and goods movement activities. Environ. Justice 2017, 10, 16–22. [Google Scholar] [CrossRef]
- Jiao, Y.Q.; Bower, J.K.; Im, W.; Basta, N.; Obrycki, J.; Al-Hamdan, M.Z.; Wilder, A.; Bollinger, C.E.; Zhang, T.W.; Hatten, L.S.; et al. Application of citizen science risk communications tools in a vulnerable urban community. Int. J. Environ. Res. Public Health 2016, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, D.G.; Liu, J.; Carlisle, S.; Zhu, A.X. Can citizen science assist digital soil mapping? Geoderma 2015, 259, 71–80. [Google Scholar] [CrossRef]
- United States Environment Protection Agency. Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil; 9200.2-86; Environment Agency: Washington, DC, USA, 2012.
- Davidson, C.M.; Urquhart, G.J.; Ajmone-Marsan, F.; Biasioli, M.; Duarte, A.C.; Diaz-Barrientos, E.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; Madrid, L.; et al. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonized sequential extraction procedure. Anal. Chim. Acta 2006, 565, 63–72. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Bruneau, P.M.C.; Towers, W. (Eds.) The State of Scotland’s Soil; Natural Scotland, 2011. Available online: https://www.sepa.org.uk/media/138741/state-of-soil-report-final.pdf (accessed on 11 March 2019).
- Department for Environment, Food and Rural Affairs. SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination—Policy Companion Document; Department for Environment, Food and Rural Affairs: London, UK, 2014.
- Ministry of Housing, Spatial Planning and Environment. Circular on Target and Intervention Values for Soil Remediation; Netherlands Government Gazette: Hague, Netherlands, 2000.
- Madrid, L.; Diaz-Barrientos, E.; Ruiz-Cortes, E.; Reinoso, R.; Biasioli, M.; Davidson, C.M.; Duarte, A.C.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; et al. Variability in concentration of potentially toxic elements in urban parks from six European cities. J. Environ. Monit. 2006, 8, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Sialelli, J.; Urquhart, G.J.; Davidson, C.M.; Hursthouse, A.S. Use of physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environ. Geochem. Health 2010, 32, 517–527. [Google Scholar] [CrossRef]
- Farmer, J.G.; Broadway, A.; Cave, M.R.; Wragg, J.; Fordyce, F.M.; Graham, M.C.; Ngwenya, B.T.; Bewley, R.J.F. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Sci. Total Environ. 2011, 409, 4958–4965. [Google Scholar] [CrossRef]
- Appleton, J.D.; Cave, M.R.; Wragg, J. Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environ. Pollut. 2012, 171, 265–272. [Google Scholar] [CrossRef]
- United States Environment Protection Agency. Highlights of the Child-Specific Exposure Handbook (Final Report); EPA/600/R-08/135; Environment Agency: Washington, DC, USA, 2009.
- JEFCA. Evaluation of Certain Food Additives and Contaminants: 26th Report of the Joint FAO/WHO Expert Committee on Food Additives; Technical Report Series 683; WHO: Geneva, Switzerland, 1982. [Google Scholar]
- JEFCA. Safety Evaluation of Certain Food Additives and Contaminants: 73rd Report of the Joint FAO/WHO Expert Committee on Food Additives; Technical Report Series 960; WHO: Geneva, Switzerland, 2011. [Google Scholar]
Location | Sampling Site(s) | Cu | Pb | Zn | Ref. |
---|---|---|---|---|---|
Hong Kong | 7 playgrounds | 28.4 | 195 | 237 | [2] |
Uppsala (Sweden) | 25 playgrounds | 24.9 | 25.5 | 84.0 | [15] |
Madrid (Spain) | 20 playgrounds | 17.0 | 30.0 | 64.0 | [16] |
Trondheim (Norway) | 320 day-care centers | 34.5 | 35.0 | 98.0 | [12] |
Belgrade (Serbia) | 15 parks/playgrounds | 46.3 | 299 | 174 | [17] |
Murcia City (Spain) | playgrounds in 4 parks | 9.3 | 18.7 | 26.9 | [3] |
Athens (Greece) | 70 playgrounds | 43.4 | 110 | 174 | [18] |
Istanbul (Turkey) | 17 playgrounds | 59.8 | 7.1 | 53.0 | [8] |
Sao Paulo (Brazil) | 12 playgrounds in parks | nd | nd | 81.5 | [19] |
Queensland (Australia) | 50 playgrounds in parks | 25 | 80 | 20 | [20] † |
Johannesburg (S. Africa) | school vegetable garden | 0 | 46.8 | 236 | [21] |
France | 315 playgrounds | <26 | 27 | nd | [22] |
Madrid (Spain) | 16 playgrounds | 21.0 | 26.0 | 82.0 | [23] |
NE England (UK) | 12 school playing fields | nd | 298 | nd | [24] |
Port Pirie (S. Australia) | 4 playgrounds | 62.5 | 707 | 3260 | [9] |
Talcahuano (Chile) | 38 schoolyards | 51.2 | 49.2 | 246 | [25] |
Baghdad (Iraq) | 11 playgrounds | 16 | 4.4 | 67 | [26] |
Lisbon (Portugal) | 19 sites including playgrounds and schoolyards | nd | 108 | nd | [4] |
Kragujevac (Serbia) | 14 kindergartens | 28.1 | 26.3 | 88.2 | [27] |
Podgorica (Montenegro) | 31 playgrounds | 52.9 | 85.9 | 113 | [5] |
Port Harcourt (Nigeria) | 10 school playgrounds | 8.52 | 6.98 | 80.4 | [28] |
Ibadan (Nigeria) | 6 urban school playgrounds | 23 | 55 | 450 | [29] † |
Sarajevo (Bosnia and Herzegovina) | 4 playgrounds | 24.2 | 33.6 | 73.2 | [6] |
Rio Grande do Sul (Brazil) | 19 playgrounds | 3.49 | 30.6 | 35.7 | [7] |
Warsaw (Poland) | 42 playgrounds/sports areas | 35.0 | 29.5 | 96.5 | [13] |
Bydgoszcz (Poland) | 36 playgrounds/sports areas | 34.6 | 25.5 | 76.4 | [13] |
Biobio region (Chile) | 10 playgrounds | 31.5 | 17.6 | 63.7 | [30] |
Hermosillo (Mexico) | 15 playgrounds | 54.9‡ | 49.1 | 261 | [14] |
Parameter | Cu | Pb | Zn | Reference |
---|---|---|---|---|
Mean | 65.8 ± 46 | 151 ± 111 | 208 ± 169 | This study |
Median | 52.9 | 118 | 154 | |
Minimum | 15.6 | 24.6 | 52.5 | |
Maximum | 220 | 479 | 860 | |
NSIS | 0.19–63.9 | 3.9–239 | 4.0–224 | [38] |
UKSHS (rural) | 2.27–96.7 | 2.6–294 | 2.63–211 | [38] |
UKSHS (urban) | 15.5–62.7 | 39.8–290 | 51–212 | [38] |
UK DEFRA (C4SL) | 630 | [39] | ||
VROM (target) | 36 | 85 | 140 | [40] |
VROM (intervention) | 190 | 530 | 720 | [40] |
Parameter | Cu | Pb | Zn | Extraction | Reference |
---|---|---|---|---|---|
Mean | 22.9 ± 25.3 | 51.2 ± 52.5 | 53.3 ± 94.0 | SBET | This study |
Median | 15.4 | 26.7 | 31.2 | ||
Minimum | 3.94 | 6.29 | 4.38 | ||
Maximum | 126 | 216 | 549 | ||
Madrid | 9.7 | 15.3 | 38.5 | SBET | [23] |
NE England | nd | 38.7 † | nd | UBMG | [24] |
Baghdad | 0.5 | 0.4 | 43 | USP | [26] |
Lisbon | nd | 65 † | nd | UBMG | [4] |
Hermosillo | nd | 25.3 ‡ | nd | PBETG | [14] |
School Sample ID | Daily Intake (Based on Pseudototal Concentrations) | Daily Intake (Based on Bioaccessible Concentrations) | ||||
---|---|---|---|---|---|---|
Cu | Pb | Zn | Cu | Pb | Zn | |
1 | 6.5 | 11 | 14 | 3.0 | 4.6 | 3.2 |
2 | 4.7 | 9.3 | 9.8 | 1.6 | 4.2 | 3.4 |
3 | 1.6 | 1.8 | 3.5 | 0.43 | 0.51 | 0.70 |
4 | 6.3 | 7.5 | 8.7 | 3.8 | 3.4 | 2.0 |
5 | 1.2 | 1.7 | 2.8 | 0.36 | 0.57 | 1.1 |
6 | 2.4 | 3.4 | 4.5 | 1.0 | 1.3 | 0.57 |
7 | 1.3 | 2.0 | 2.7 | 0.33 | 0.68 | 0.46 |
8 | 0.63 | 1.2 | 1.8 | 0.12 | 0.34 | 0.26 |
9 | 1.1 | 2.8 | 3.3 | 0.12 | 1.0 | 1.4 |
10 | 2.5 | 6.1 | 7.3 | 0.81 | 2.1 | 1.3 |
11 | 1.5 | 2.3 | 4.0 | 0.40 | 0.79 | 0.40 |
12 | 4.5 | 11 | 25 | 1.5 | 4.7 | 7.1 |
13 | 2.4 | 3.5 | 4.6 | 0.49 | 0.98 | 0.93 |
14 | 1.9 | 14 | 7.4 | 0.55 | 6.4 | 1.4 |
15 | 3.2 | 7.9 | 6.0 | 0.71 | 2.6 | 1.4 |
16 | 0.73 | 1.0 | 2.0 | 0.18 | 0.30 | 0.36 |
17 | 1.7 | 3.8 | 6.7 | 0.48 | 1.2 | 0.96 |
18 | 2.2 | 5.5 | 7.8 | 0.52 | 1.6 | 1.4 |
19 | 3.3 | 7.3 | 9.3 | 1.0 | 3.0 | 1.2 |
20 | 1.5 | 5.3 | 4.4 | 0.35 | 2.2 | 0.56 |
21 | 1.5 | 4.4 | 3.0 | 0.38 | 1.7 | 0.47 |
22 | 2.2 | 5.6 | 5.5 | 0.62 | 2.1 | 0.87 |
23 | 2.5 | 7.8 | 9.8 | 0.18 | 0.19 | 0.16 |
24 | 0.89 | 0.8 | 3.0 | 0.32 | 0.64 | 0.45 |
25 | 0.79 | 1.2 | 1.7 | 0.31 | 0.37 | 0.30 |
26 | 1.1 | 1.9 | 3.1 | 0.20 | 0.42 | 0.24 |
27 | 1.4 | 1.7 | 3.7 | 0.20 | 0.30 | 0.13 |
28 | 1.3 | 3.0 | 4.5 | 0.29 | 0.38 | 0.54 |
29 | 0.62 | 1.2 | 4.3 | na | na | na |
30 | 1.7 | 6.7 | 5.9 | 0.48 | 0.66 | 1.7 |
31 | 1.1 | 2.0 | 4.9 | 0.18 | 0.32 | 0.30 |
32 | 2.5 | 11 | 8.2 | na | na | na |
33 | 1.6 | 2.1 | 8.2 | 0.46 | 0.27 | 0.58 |
34 | 1.3 | 4.2 | 3.7 | 0.47 | 0.40 | 1.1 |
35 | na | na | na | na | na | na |
36 | 1.6 | 2.8 | 4.7 | na | na | na |
37 | 0.95 | 2.1 | 3.2 | 0.36 | 0.62 | 1.4 |
38 | 2.2 | 5.4 | 26 | 1.3 | 3.8 | 16 |
39 | 0.46 | 0.7 | 1.6 | 0.22 | 0.19 | 0.41 |
40 | 0.92 | 2.5 | 2.4 | na | na | na |
41 | 1.7 | 4.2 | 5.9 | 0.98 | 0.96 | 2.7 |
42 | 1.1 | 2.0 | 4.5 | 0.51 | 0.59 | 1.0 |
43 | 1.7 | 6.7 | 7.0 | na | na | na |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidson, C.M.; Duncan, C.; MacNab, C.; Pringle, B.; Stables, S.J.; Willison, D. Measuring Copper, Lead and Zinc Concentrations and Oral Bioaccessibility as Part of the Soils in Scottish Schools Project. Minerals 2019, 9, 173. https://doi.org/10.3390/min9030173
Davidson CM, Duncan C, MacNab C, Pringle B, Stables SJ, Willison D. Measuring Copper, Lead and Zinc Concentrations and Oral Bioaccessibility as Part of the Soils in Scottish Schools Project. Minerals. 2019; 9(3):173. https://doi.org/10.3390/min9030173
Chicago/Turabian StyleDavidson, Christine M., Craig Duncan, Cameron MacNab, Bethany Pringle, Stuart J. Stables, and Debbie Willison. 2019. "Measuring Copper, Lead and Zinc Concentrations and Oral Bioaccessibility as Part of the Soils in Scottish Schools Project" Minerals 9, no. 3: 173. https://doi.org/10.3390/min9030173
APA StyleDavidson, C. M., Duncan, C., MacNab, C., Pringle, B., Stables, S. J., & Willison, D. (2019). Measuring Copper, Lead and Zinc Concentrations and Oral Bioaccessibility as Part of the Soils in Scottish Schools Project. Minerals, 9(3), 173. https://doi.org/10.3390/min9030173