Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu–Au Magmato-Hydrothermal Systems
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Cu–Au Mineralization
3. Methodology
3.1. Field Data
3.2. Pyrite Chemistry
3.3. Whole Rock Chemistry and Petrological Data
4. Results
4.1. Field Data
4.2. Relationship between Mineralization and Intrusive Rocks
4.3. Petrology
4.4. Chemistry of the Major Elements
4.5. Trace Elements
4.6. Comparison with TTG Suites
5. Discussion
5.1. Field Relationships
5.2. Two Distinct Magmas
5.3. Magma Source and Production Conditions
- An S-enriched hydrated basalt: S-bearing melts are enriched in mafic components (Ca, Fe, Mg, Ti) compared to melts produced experimentally from S-free material [113]. S-bearing systems also produce more melt than S-free systems [113]. The stability field of garnet, however, may not be sufficiently reduced to produce high HREE melts. Additional experiments are needed to examine the REE-content of melts produced from S-rich crustal rocks;
- A source with a significant mantle component: The diorites have fractionated REE profiles and lack units enriched in compatible elements (Ni < 100 ppm, Mg# ~0.4; Table 4), which rules out a peridotite-only source. The diorites do not define a calc-alkaline trend (i.e., lack of fractionation-related K-enrichment), and their source thus differs from the mantle metasomatized by fluids observed in modern subduction zones. The source of the diorite likely corresponds to mantle rocks metasomatized by TTG magmas [107]. This mantle component may be paramount in producing magmas enriched sufficiently in metals to contribute to mineralizing events.
5.4. Magma Differentiation
6. Conclusions
- The shallow emplacement depth and multiphase nature of the pluton are suggested. Additional timing constraints are required to evaluate, for example, whether the pluton produced a large amount of fluid at a point during its evolution, or whether magma pulses with limited volumes emplaced over a period of 2–4 Ma to build the Central Camp Cu–Au system incrementally;
- The source of the magmas was likely a mixture of garnet-bearing amphibolite and metasomatized peridotite located at ~20 kbar. Mantle rocks are not usually present in the source of large-volume Archean granitoid intrusions, and whether their presence in the source of the Chibougamau pluton was essential to the mineralizing process remains to be elucidated;
- The Chibougamau pluton is a TTD suite. Prior to alteration, it may have been more K-enriched than most of the synvolcanic intrusions of the Abitibi sub-province. These chemical features can be easily integrated to prospection models;
- Diorites differentiated more than tonalites, but fractional crystallization remains limited in the Chibougamau pluton. Whether this factor has limited the concentration of metals and fluids in evolved magmas remains to be investigated.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ayres, L.D.; Cerny, P. Metallogeny of granitoid rocks in the Canadian Shield. Can. Mineral. 1982, 20, 439–536. [Google Scholar]
- Cimon, J. Possibility of an Archean porphyry copper in Quebec. Can. Min. J. 1973, 94, 1–57. [Google Scholar]
- Guha, J.; Lange-Brard, F.; Péloquin, S.; Tremblay, A.; Racicot, D.; Bureau, S. Devlin deposit, a part of an Archean porphyry system? In Chibougamau, Stratigraphy and Mineralization; Guha, J., Chown, E., Eds.; Canadian Institute of Mining and Metallurgy: Westmount, QC, Canada, 1984; Volume 32, pp. 345–356. [Google Scholar]
- Pilote, P.; Dion, C.; Morin, R. Géologie et évolution métallogénique de la région de Chibougamau: des gîtes de type Cu-Au-Mo porphyriques aux gisements filoniens mésothermaux aurifères; MRN report MB-96-14; Ministère des Ressources Naturelles: Québec, QC, Canada, 1996.
- Jébrak, M.; Doucet, P. Geology and gold-molybdenum porphyry mineralisation of the Archean Taschereau-Launay plutons, Abitibi, Quebec. Precambrian Res. 2002, 115, 329–348. [Google Scholar] [CrossRef]
- Pilote, P. Le camp minier de Chibougamau et le parautochtone grenvillien: Métallogénie, métamorphisme et aspects structuraux. In Livret-Guide d’Excursion B1; Joined Anual Meeting, Geological Association of Canada – Mineralogical Association of Canada (GAC-MAC): Montréal, QC, Canada, 2006; p. 138. [Google Scholar]
- Pilote, P.; Robert, F.; Kirkham, R.; Daigneault, R.; Sinclair, W.D. Minéralisation de type porphyrique et filonienne dans le Complexe du lac Doré—le secteur du lac Clark et de l’île Merrill. In Géologie et métallogénie du district minier de Chapais-Chibougamau: Nouvelle vision du potentiel de découverte; Pilote, P., Ed.; MRN report DV 98-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1998; pp. 71–90. [Google Scholar]
- Pilote, P.; Kirkham, R.V.; Robert, F.; Sinclair, W.D.; Daigneault, R.; Magnan, M. Développement d’un District à Minéralisation de type Cu-Au (Mo) Porphyrique dans la Région de Chibougamau et Implications Métallogéniques; MRN report DV 95-04; Ministère des Ressources Naturelles: Québec, QC, Canada, 1995.
- Pilote, P.; Cimon, J.; Dion, C.; Kirkham, R.; Robert, F.; Sinclair, W.D.; Daigneault, R. Les Gisements de Type Cu-Au Porphyrique de la Région de Chibougamau; MRN report DP 93-02; Ministère des Ressources Naturelles: Québec, QC, Canada, 1993.
- Magnan, M.; Daigneault, R.; Robert, F.; Pilote, P. Intrusion-related Au-Cu-Ag sulfide rich veins in the Archean Doré Lake Complex, Chibougamau, Québec. In Proceedings of the International Conference on Tectonics and Metallogeny of Early/Mid Proterozoic Orogenic Belts, Precambrian ’95, Montreal, QC, Canada, 28 August–1 September 1995; p. 296. [Google Scholar]
- Pilote, P.; Cimon, J.; Dion, C.; Kirkham, R.V.; Robert, F.; Sinclair, W.D.; Daigneault, R. Les minéralisations de type porphyrique de la région de Chibougamau: Connections possibles avec les gisements filoniens de la région de lac Doré? In Proceedings of the Congrès annuel de l’Association Professionnel des Géologues et Géophysiciens du Québec (APGGQ), Val-d’Or, QC, Canada, 1–3 May 1994; p. 100. [Google Scholar]
- Pilote, P.; Allard, G.O.; Bellevance, Y.; Blais, A.; Brisson, H.; Chown, E.; Daigneault, R.; de Corta, H.; Dion, C.; Gervais, D.; et al. Géologie et métallogénie du district minier de Chapais-Chibougamau: Nouvelle vision du potentiel de découverte; MRN report DV-98-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1998.
- Guha, J.; Chown, E.; Archambault, G.; Barnes, S.-J.; Brisson, H.; Daigneault, R.; Dion, C.; Dubé, B.; Mueller, W.U.; Pilote, P. Metallogeny in relation to magmatic and structural evolution of an Archean greenstone belt: Chibougamau mining district. In Gold and Base-Metal Mineralization in the Abitibi Subprovince, Canada, with Emphasis on the Québec Segment; Hoe, S.E., Robert, F., Groves, D.I., Eds.; The University of Western Australia: Perth, Australia, 1990; pp. 121–166. [Google Scholar]
- Sinclair, W.D. Porphyry deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; Volume 5, pp. 223–243. [Google Scholar]
- Racicot, D. Géochimie et Métallogénie des Parties Occidentale et Centrale du Pluton de Chibougamau; MRN report DPV-834; Ministère des Ressources Naturelles: Québec, QC, Canada, 1981; ISBN 255001944X. [Google Scholar]
- Racicot, D. Géochimie et Métallogénie de la Partie Orientale du Pluton de Chibougamau; MRN report DPV-758; Ministère des Ressources Naturelles: Québec, QC, Canada, 1980; ISBN 2551040272. [Google Scholar]
- Goodwin, A.M.; Ridler, R.H. The Abitibi orogenic belt. In Symposium on Basins and Geosynclines of the Canadian Shield; Baer, A.J., Ed.; Geological Association of Canada: Wininipeg, MB, Canada, 1970; Volume 70, pp. 1–31. [Google Scholar]
- Thurston, P.C.; Ayer, J.A.; Goutier, J.; Hamilton, M.A. Depositional gaps in Abitibi greenstone belt stratigraphy: A key to exploration for syngenetic mineralization. Econ. Geol. 2008, 103, 1097–1134. [Google Scholar] [CrossRef]
- Leclerc, F.; Roy, P.; Pilote, P.; Bédard, J.H.; Harris, L.B.; McNicoll, V.J.; van Breemen, O.; David, J.; Goulet, N. Géologie de la Région de Chibougamau; MERN report RG 2015-03; Ministère de l’Énergie et des Ressources Naturelles: Québec, QC, Canada, 2017.
- David, J.; Vaillancourt, D.; Bandyayera, D.; Simard, M.; Goutier, J.; Pilote, P.; Dion, C.; Barbe, P. Datations U-Pb Effectuées dans les Sousprovinces d’Ashuanipi, de La Grande, d’Opinaca et d’Abitibi en 2008-2009; MERN report, RP-2010-11; Ministère de l’Énergie et des Ressources Naturelles: Québec, QC, Canada, 2011.
- Mortensen, J.K. U–Pb geochronology of the eastern Abitibi subprovince. Part 1: Chibougamau–Matagami–Joutel region. Can. J. Earth Sci. 1993, 30, 11–28. [Google Scholar] [CrossRef]
- Davis, D.; Simard, M.; Hammouche, H.; Bandyayera, D.; Goutier, J.; Pilote, P.; Leclerc, F.; Dion, C. Datations U-Pb Effectuées dans les Provinces du Supérieur et de Churchill en 2011-2012; MERN report RP-2014-05; Ministère de l’Énergie et des Ressources Naturelles: Québec, QC, Canada, 2014.
- Leclerc, F.; Bédard, J.H.; Harris, L.B.; McNicoll, V.J.; Goulet, N.; Roy, P.; Houle, P. Tholeiitic to calc-alkaline cyclic volcanism in the Roy Group, Chibougamau area, Abitibi Greenstone Belt—Revised stratigraphy and implications for VHMS exploration Geological Survey of Canada Contribution 20100254. Ministère des Ressources naturelles et de la Faune Contribution 8439-2010-2011-17. Can. J. Earth Sci. 2011, 48, 661–694. [Google Scholar]
- Leclerc, F.; Harris, L.B.; Bédard, J.H.; van Breemen, O.; Goulet, N. Structural and Stratigraphic Controls on Magmatic, Volcanogenic, and Shear Zone-Hosted Mineralization in the Chapais-Chibougamau Mining Camp, Northeastern Abitibi, Canada (1,2). Econ. Geol. 2012, 107, 963–989. [Google Scholar] [CrossRef]
- Allard, G.O. Doré Lake Complex and its importance to Chibougamau Geology and Metallogeny; MRN report DPV-386, Ministère des Ressources Naturelles: Québec, QC, Canada, 1976. [Google Scholar]
- Augland, L.; David, J.; Pilote, P.; Leclerc, F.; Goutier, J.; Hammouche, H.; Lafrance, I.; Takam, T.; Deschênes, P.; Guemache, M. Datations U-Pb dans les Provinces de Churchill et du Supérieur Effectuées au GEOTOP en 2012-2013; MERN report RP 2015-01; Ministère de l’Énergie et des Ressources Naturelles: Québec, QC, Canada, 2016.
- Frarey, M.J.; Krogh, T.E. U-Pb zircon ages of late internal plutons of the Abitibi and eastern Wawa subprovinces, Ontario and Quebec. In Current Research, Part A; Geological Survey of Canada: Ottawa, ON, Canada, 1986; Paper 86-1A; pp. 43–48. [Google Scholar]
- SIGEOM Système d’information géominière du Québec—SIGEOM. Available online: http://sigeom.mines.gouv.qc.ca (accessed on 20 August 2008).
- MacGregor, A.M. Some milestones in the Precambrian of Southern Rhodesia. Proc. Geol. Surv. South Africa 1951, 54, 27–81. [Google Scholar]
- Carr, S.D.; Easton, R.M.; Jamieson, R.A.; Culshaw, N.G. Geologic transect across the Grenville orogen of Ontario and New York. Can. J. Earth Sci. 2000, 37, 193–216. [Google Scholar] [CrossRef] [Green Version]
- Daigneault, R.; Allard, G.O. Le Complexe du lac Doré et son environnement géologique (région de Chibougamau-sous-province de l’Abitibi); MRN report MM-89-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1990; ISBN 2551123313.
- Cimon, J.; Gobeil, A. The Stella Formation: its implications for the genesis and relative age of the mineralization of the Chibougamau mining camp. Can. Inst. Min. Metall. Bull. 1976, 69, 96. [Google Scholar]
- Allard, G.O.; Caty, J.L.; Chown, E.H.; Cimon, J.; Gobeil, A.; Baker, D. Stratigraphie et métallogénie de la région de Chibougamau; Geological Association of Canada—Mineralogical Association of Canada (GAC-MAC): Montréal, QC, Canada, 1979; p. 94. [Google Scholar]
- Racicot, D.; Chown, E.H.; Hanel, T. Plutons of the Chibougamau-Desmaraisville Belt: A Preliminary Survey. In Chibougamau, Stratigraphy and Mineralization; Guha, J., Chown, E., Eds.; Canadian Institute of Mining and Metallurgy: Westmount, QC, Canada, 1984; Volume 34, pp. 178–197. [Google Scholar]
- Krogh, T.E. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim. Cosmochim. Acta 1982, 46, 637–649. [Google Scholar] [CrossRef]
- Pilote, P.; Dion, C.; Joanisse, A.; David, J.; Machado, N.; Kirkham, R.V.; Robert, F. Géochronologie des minéralisations d’affiliation magmatique de l’Abitibi, secteurs Chibougamau et de Troilus-Frotet: implications géotectoniques. In Programme et Résumés, Séminaire d’information sur La Recherche Géologique; MRN report, DV-97-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1997; p. 47. [Google Scholar]
- McNicoll, V.; Dubé, B.; Goutier, J.; Mercier-Langevin, P.; Dion, C.; Monecke, T.; Ross, P.-S.; Thurston, P.; Pilote, P.; Bédard, J.; et al. Nouvelles Datations U-Pb Dans le Cadre du Projet ICG-3 Abitibi/Plan Cuivre: Incidences Pour l’Interprétation Géologique et l’Exploration des Métaux Usuels; MRN report DV-2008-06; Ministère des Ressources Naturelles: Québec, QC, Canada, 2008.
- David, J.; Davis, D.W.; Dion, C.; Goutier, J.; Legault, M.; Roy, P. Datations U-Pb Effectuées dans la Sous-province de l’Abitibi en 2005-2006; MRN report RP 2007-01; Ministère des Ressources Naturelles: Québec, QC, Canada, 2007.
- Mueller, W.; Chown, E.H.; Sharma, K.N.M.; Tait, L.; Rocheleau, M. Paleogeographic and paleotectonic evolution of a basement-controlled Archean supracrustal sequence, Chibougamau-Caopatina, Quebec. J. Geol. 1989, 97, 399–420. [Google Scholar] [CrossRef]
- Jolly, W.T. Relations between Archean lavas and intrusive bodies of the Abitibi greenstone belt, Ontario-Québec. In Volcanic regimes in Canada; Baragar, W.R., Coleman, L.C., Hall, J.M., Eds.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 1980; Volume 16, pp. 311–330. [Google Scholar]
- Ludden, J.N.; Francis, D.M.; Allard, G.O. The geochemistry and evolution of the volcanic rocks of the Chibougamau region of the Abitibi metavolcanic belt. In Chibougamau, Stratigraphy and Mineralization; Guha, J., Chown, E., Eds.; Canadian Institute of Mining and Metallurgy: Westmount, QC, Canada, 1984; Volume 34, pp. 20–34. [Google Scholar]
- Feng, R.; Kerrich, R. Geobarometry, differential block movements, and crustal, structure of the southwestern Abitibi greenstone belt, Canada. Geology 1990, 18, 870–873. [Google Scholar] [CrossRef]
- Dimroth, E.; Imreh, L.; Goulet, N.; Rocheleau, M. Evolution of the south-central segment of the Archean Abitibi belt, Quebec. Part II: Tectonic evolution and geomechanical model. Can. J. Earth Sci. 1983, 20, 1355–1373. [Google Scholar] [CrossRef]
- Dimroth, E.; Imreh, L.; Goulet, N.; Rocheleau, M. Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part III: Plutonic and metamorphic evolution and geotectonic model. Can. J. Earth Sci. 1983, 20, 1374–1388. [Google Scholar] [CrossRef]
- Dimroth, E.; Rochelau, M.; Mueller, W.; Archer, P.; Brisson, H.; Fortin, G.; Jutras, M.; Lefebvre, C.; Piché, M.; Pilote, P. Paleogeographic and paleotectonic response to magmatic processes: A case history from the Archean sequence in the Chibougamau area, Quebec. Geol. Rundschau 1985, 74, 11–32. [Google Scholar] [CrossRef]
- Dimroth, E.; Imreh, L.; Rocheleau, M.; Goulet, N. Evolution of the south-central part of the Archean Abitibi belt, Quebec. Part I: Stratigraphy and paleogeographic model. Can. J. Earth Sci. 1982, 19, 1729–1758. [Google Scholar] [CrossRef]
- Daigneault, R. Une évolution tectonique et métallogénique centrée sur le pluton de Chibougamau. In Géologie et Métallogénie du District Minier de Chapais-Chibougamau: Nouvelle Vision du Potentiel de Découverte; Pilote, P., Allard, G.O., Bellevance, Y., Blais, A., Brisson, H., Chown, E., Daigneault, R., de Corta, H., Dion, C., Gervais, D., et al., Eds.; MRN report DV-98-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1998; pp. 45–52. [Google Scholar]
- Jolly, W.T. Regional metamorphic zonation as an aid in study of Archean terrains: Abitibi region, Ontario. Can. Mineral. 1974, 12, 499–508. [Google Scholar]
- Faure, S. Relations Entre les Minéralisations Aurifères et les Isogrades Métamorphiques en Abitibi/Relationship between Gold Mineralisations and Metamorphic Isogrades in Abitibi. Consorem project 2013-03. Available online: http://www.consorem.ca/rapports_publics.html (accessed on 10 August 2018).
- Gower, C.F.; Clifford, P.M. The structural geometry and geological history of Archean rocks at Kenora, north–western Ontario—A proposed type area for the Kenoran Orogeny. Can. J. Earth Sci. 1981, 18, 1075–1091. [Google Scholar] [CrossRef]
- McMillan, W.J.; Panteleyev, A. Porphyry copper deposits. In Ore Deposit Models; Roberts, R.G., Sheahan, P.A., Eds.; Reprint Series; Geoscience Canada: Burnaby, BC, Canada; Volume 3, pp. 45–58.
- Guha, J. Hydrothermal systems and correlations of mineral deposits in the Chibougamau mining district—An overview. In Chibougamau, Stratigraphy and Mineralization; Guha, J., Chown, E., Eds.; Canadian Institute of Mining and Metallurgy: Westmount, QC, Canada, 1984; Volume 34, pp. 517–534. [Google Scholar]
- Pilote, P. Stratigraphy, Structure et Gîtologie de la Région du Lac Berrigan, Canton de McKenzie; MRN report ET 86-02; Ministère des Ressources Naturelles: Québec, QC, Canada, 1987.
- Guha, J.; Dubé, B.; Pilote, P.; Chown, E.H.; Archambault, G.; Bouchard, G. Gold mineralization patterns in relation to the lithologic and tectonic evolution of the Chibougamau mining district, Quebec, Canada. Miner. Depos. 1988, 23, 293–298. [Google Scholar] [CrossRef]
- Pilote, P.; Guha, J. Métallogénie de l’extrémité Est de la Sous-Province de l’Abitibi. In Géologie et métallogénie du district minier de Chapais-Chibougamau: Nouvelle vision du potentiel de découverte; Pilote, P., Ed.; MRN report DV 98-03; Ministère des Ressources Naturelles: Québec, QC, Canada, 1998; pp. 29–43. [Google Scholar]
- Pilote, P.; Dion, C.; Cimon, J.; Kirkham, R.V.; Robert, F.; Sinclair, W.D.; Daigneault, R.; Magnan, M. Les Minéralisations de Types Cu–Mo–Au Porphyrique et les Gisements Cu–Au Filoniens du Lac Doré, Chibougamau: Processus Hydrothermaux Distincts ou Evolution d’un Même Evénement Minéralisateur? MRN report DV 94-09; Ministère des Ressources Naturelles: Québec, QC, Canada, 1994.
- Tessier, A.C.; Hodgson, C.J.; Lulin, J.M. Formation of a late-tectonic, mesothermal-type gold-quartz vein deposit by remobilization of metals from a magmatic-hydrothermal copper-gold deposit at the Portage copper-gold mine, Chibougamau, Québec, Canada. In Proceedings of the International Conference on Tectonics and Metallogeny of Early/Mid Proterozoic Orogenic Belts, Precambrian ’95, Montreal, QC, Canada, 28 August–1 September 1995; p. 131. [Google Scholar]
- Brooks, C. The Rb/Sr geochronology of the Archean Chibougamau pluton, Quebec. Can. J. Earth Sci. 1980, 17, 776–783. [Google Scholar] [CrossRef]
- Tessier, A.; Hodgson, C.J. Syn-tectonic auriferous quartz-carbonate vein-type orebodies formed by metamorphic remobilization of Au and Cu from premetamorphic sulfide lenses at the Portage Mine, Chibougamau, Québec: Implications for crustal recycling of metals and the origin of meta. In Proceedings of the Geological Association of Canada/Mineralogical Association of Canada, Annual Meeting, Abstract, Waterloo, ON, Canada, 12–15 May 1994; Volume 1, p. A111. [Google Scholar]
- Magnan, M.; Pilote, P.; Daigneault, R. Minéralisations et altérations à la Mine Copper Rand, Chibougamau; MRN report ET-98-01; Ministère des Ressources Naturelles: Québec, QC, Canada, 1999.
- Maillet, J. Pétrographie et géochimie des dykes du camp minier de Chibougamau. Unpublished Master’s Thesis, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada, 1978. [Google Scholar]
- Guha, J.; Leroy, J.; Guha, D. Significance of fluid phases associated with shear zone Cu-Au mineralization in the Doré Lake complex, Chibougamau, Quebec. Bull. Mineral. 1979, 102, 569–576. [Google Scholar]
- Guha, J.; Kanwar, R. Vug brines-fluid inclusions: A key to the understanding of secondary gold enrichment processes and the evolution of deep brines in the Canadian Shield. In Saline Water and Gases in Crystalline Rocks; Fritz, P., Frape, S.K., Eds.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 1987; Volume 33, pp. 95–101. [Google Scholar]
- Guha, J.; Koo, J. Role of fluid state mobilization during metamorphism of the Henderson ore bodies, Chibougamau, Quebec, Canada. Can. J. Earth Sci. 1975, 12, 1516–1523. [Google Scholar] [CrossRef]
- Thorpe, R.I.; Guha, J.; Franklin, J.M.; Loveridge, W.D. Use of a Superior province lead isotope framework in interpreting mineralization stages in the Chibougamau district. In Canadian Institute of Mining and Metallurgy Special Volume; Guha, J., Chown, E., Eds.; Canadian Institute of Mining and Metallurgy: Westmount, QC, Canada, 1984; Volume 34, pp. 496–516. [Google Scholar]
- Thorpe, R.I.; Guha, J.; Cimon, J. Evidence from lead isotopes regarding the genesis of ore deposits in the Chibougamau region, Quebec. Can. J. Earth Sci. 1981, 18, 708–723. [Google Scholar] [CrossRef]
- Guha, J.; Archambault, G.; Leroy, J. A correlation between the evolution of mineralizing fluids and the geomechanical development of a shear zone as illustrated by the Henderson 2 Mine, Quebec. Econ. Geol. 1983, 78, 1605–1618. [Google Scholar] [CrossRef]
- Fortey, N.J. Hydrothermal mineralization associated with minor late Caledonian intrusions in northern Britain: preliminary comments. Inst. Min. Metall. Trans. 1980, 89, 173–176. [Google Scholar]
- Sillitoe, R.H. Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. Rev. Econ. Geol. 2000, 13, 315–345. [Google Scholar]
- Sillitoe, R.H. Some thoughts on gold-rich porphyry copper deposits. Miner. Depos. 1979, 14, 161–174. [Google Scholar] [CrossRef]
- Chivas, A.R. Geochemical evidence for magmatic fluids in porphyry copper mineralization. Contrib. to Mineral. Petrol. 1982, 78, 389–403. [Google Scholar] [CrossRef]
- Savard, D.; Bouchard-Boivin, B.; Barnes, S.-J.; Garbe-Schönberg, D. UQAC-FeS: A new series of base metal sulfide quality control reference material for LA-ICP-MS analysis. In Proceedings of the 10th International Conference on the Analysis of Geological and Environmental Materials, Sydney, Australia, 8–13 July 2018. [Google Scholar]
- Garbe-Schönberg, D.; Müller, S. Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom. 2014, 29, 990–1000. [Google Scholar] [CrossRef] [Green Version]
- Jochum, K.P.; Willbold, M.; Raczek, I.; Stoll, B.; Herwig, K. Chemical Characterisation of the USGS Reference Glasses GSA 1G, GSC 1G, GSD 1G, GSE 1G, BCR 2G, BHVO 2G and BIR 1G Using EPMA, ID TIMS, ID ICP MS and LA ICP MS. Geostand. Geoanalytical Res. 2005, 29, 285–302. [Google Scholar] [CrossRef]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Webmineral Mineralogy Database. Available online: http://webmineral.com (accessed on 1 January 2019).
- Gourcerol, B.; Kontak, D.J.; Thurston, P.C.; Petrus, J.A. Application of La-icp-ms Sulfide Analysis and Methodology For Deciphering Elemental Paragenesis and Associations in Addition To Multi-stage Processes in Metamorphic Gold Settings. Can. Mineral. 2018, 56, 39–64. [Google Scholar] [CrossRef]
- Morin, R. Géologie et Compilation Géologique de la Région de Chapais; MRN report MM 91-02; Ministère des Ressources Naturelles: Québec, QC, Canada, 1994.
- Houle, P. Compilation de Surface, Interprétation Géologique; Ressources MSV, 1 map: Montrèal, QC, Canada, 1990. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H. Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Taylor, R.P.; Fryer, B.J. Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey: the temporal interplay of potassic, propylitic, and phyllic fluids. Can. J. Earth Sci. 1980, 17, 901–926. [Google Scholar] [CrossRef]
- Barr, S.M.; O’Beirne, A.M. Petrology of the Gillis Mountain pluton, Cape Breton Island, Nova Scotia. Can. J. Earth Sci. 1981, 18, 395–404. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Irvine, T.N.J.; Baragar, W. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Barker, F.; Arth, J.G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology 1976, 4, 596–600. [Google Scholar] [CrossRef]
- Frost, B.R. Magnetic petrology; factors that control the occurrence of magnetite in crustal rocks. In Oxide Minerals: Petrologic and Magnetic Significance; Lindsley, D.H., Ed.; Mineralogical Society of America Reviews: Chantilly, VA, USA, 1991; Volume 25, pp. 489–509. [Google Scholar]
- Middlemost, E.A.K. Iron oxidation ratios, norms and the classification of volcanic rocks. Chem. Geol. 1989, 77, 19–26. [Google Scholar] [CrossRef]
- Moyen, J.-F.; Martin, H. Forty years of TTG research. Lithos 2012, 148, 312–336. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Woolley, A.R. The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral. Petrol. 1992, 46, 1–22. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Ross, P.-S.; Bédard, J.H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci. 2009, 46, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Geological Association of Canada, S.N.C., Mineral Deposits Division: St. John’s, NL, Canada, 1996; Volume 12, pp. 79–113. [Google Scholar]
- Fourcade, S.; Allegre, C.J. Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contrib. to Mineral. Petrol. 1981, 76, 177–195. [Google Scholar] [CrossRef]
- Brown, M.; Topley, C.G.; Power, G.M. The origin of the diorites and associated rocks of Chouet, north-western Guernsey, Channel Islands. Mineral. Mag. 1980, 43, 919–929. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Beakhouse, G.P. The Abitibi Subprovince Plutonic Record: Tectonic and Metallogenic Implications; Open File Report 6268; Ontario Geological Survey: Sudbury, ON, Canada, 2011. [Google Scholar]
- Duquette, G. Demie Nord des Cantons de McKenzie et de Roy et Quart Nord-Ouest du Canton de McCorkill; MRN report DPV 837, 4 maps; Ministère des Ressources Naturelles: Québec, QC, Canada, 1982.
- Caty, J.-L. Canton de Richardson (comté d’Abitibi-Est); MRN report DP 606. 1 map; Ministère des Ressources Naturelles: Québec, QC, Canada, 1978.
- Voudouris, P. A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece. Mineral. Petrol. 2006, 87, 241–275. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Franchini, M.; McFarlane, C.; Maydagan, L.; Reich, M.; Lentz, D.R.; Meinert, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Katz, L.R.; Kontak, D.J.; Dubé, B.; McNicoll, V. The geology, petrology, and geochronology of the Archean Côté Gold large-tonnage, low-grade intrusion-related Au (±Cu) deposit, Swayze greenstone belt, Ontario, Canada. Can. J. Earth Sci. 2017, 54, 173–202. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.-F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Magmatic epidote. Rev. Mineral. Geochem. 2004, 56, 399–430. [Google Scholar] [CrossRef]
- Moyen, J.-F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 2011, 123, 21–36. [Google Scholar] [CrossRef]
- Moyen, J.; Stevens, G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In Archean Geodynamics and Environments; Geophysical Monograph Series 164; AGU American Geophysical Union: Washington, DC, USA, 2006; Volume 164, pp. 149–175. [Google Scholar]
- Hanson, G.N. Rare earth elements in petrogenetic studies of igneous systems. Annu. Rev. Earth Planet. Sci. 1980, 8, 371–406. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J. A model for trondhjemite tonalite dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. Solid Earth 1990, 95, 21503–21521. [Google Scholar] [CrossRef]
- Prouteau, G.; Scaillet, B. Experimental constraints on sulphur behaviour in subduction zones: Implications for TTG and adakite production and the global sulphur cycle since the Archean. J. Petrol. 2013, 54, 183–213. [Google Scholar] [CrossRef]
- Yoder, H.S.; Tilley, C.E. Origin of basalt magmas: An experimental study of natural and synthetic rock systems. J. Petrol. 1962, 3, 342–532. [Google Scholar] [CrossRef]
- Hanson, G.N. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet. Sci. Lett. 1978, 38, 26–43. [Google Scholar] [CrossRef]
- Mathieu, L. Quantifying hydrothermal alteration with normative minerals and other chemical tools at the Beattie Syenite, Abitibi greenstone belt, Canada. Geochemistry Explor. Environ. Anal. 2016, 16, 233–244. [Google Scholar] [CrossRef]
- Tindle, A.G.; Pearce, J.A. Petrogenetic modelling of in situ fractional crystallization in the zoned Loch Doon Pluton, Scotland. Contrib. to Mineral. Petrol. 1981, 78, 196–207. [Google Scholar] [CrossRef]
- Klein, M.; Stosch, H.-G.; Seck, H.A. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: An experimental study. Chem. Geol. 1997, 138, 257–271. [Google Scholar] [CrossRef]
- Drake, M.J.; Weill, D.F. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim. Cosmochim. Acta 1975, 39, 689–712. [Google Scholar] [CrossRef]
- Botcharnikov, R.E.; Linnen, R.L.; Wilke, M.; Holtz, F.; Jugo, P.J.; Berndt, J. High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nat. Geosci. 2011, 4, 112. [Google Scholar] [CrossRef]
- Botcharnikov, R.E.; Holtz, F.; Mungall, J.E.; Beermann, O.; Linnen, R.L.; Garbe-Schenberg, D. Behavior of gold in a magma at sulfide-sulfate transition: Revisited. Am. Mineral. 2013, 98, 1459–1464. [Google Scholar] [CrossRef]
- Botcharnikov, R.E.; Linnen, R.L.; Holtz, F. Solubility of Au in Cl-and S-bearing hydrous silicate melts. Geochim. Cosmochim. Acta 2010, 74, 2396–2411. [Google Scholar] [CrossRef]
- Fraser, R.J. The Lac Troilus gold-copper deposit, northwestern Quebec; a possible Archean porphyry system. Econ. Geol. 1993, 88, 1685–1699. [Google Scholar] [CrossRef]
- Fayol, N.; Jébrak, M. Archean sanukitoid gold porphyry deposits: A new understanding and genetic model from the Lac Bachelor gold deposit, Abitibi, Canada. Econ. Geol. 2017, 112, 1913–1936. [Google Scholar] [CrossRef]
Lithology | Aerial Surface (%) and Contact | Petrology |
---|---|---|
Hbl 1-bearing meladiorite 2 | 7% 3—gradual contact with Qz-diorite, often seen as enclaves in other phases | 40%–90% Hbl and ±Bt, 10%–50% interstitial and locally porphyric Pl, <5% interstitial Qz, ±Ep, Ap, Spn, Opq |
Hbl-bearing Qz-diorite | 13%—gradual or sharp contacts with Bt-tonalite | 20%–25% Hbl (up to 50%), 5%–10% Bt, 10%–20% Qz, 50% Pl, ±Ep, Ap, Spn, Opq. Typical facies: >5% Qz and >25% Hbl |
Bt-bearing tonalite | 75%—a main unit of many outcrops, may also occur as dykes. Coarse-grained porphyritic (Fsp or Qz) and medium-grained varieties | 10%–20% Bt (or Chl) and ±Hbl, 60% Pl (porphyric and groundmass, oscillatory zoning), 25% Qz (elongated grains around Pl), ±Ep, Ap, Spn, Opq |
Leucotonalite | 5%—Lenses and dykes that cut all the other units | <5% Bt, >25% Qz, <10% Mc, 60% Pl, ±Ep, Ms, Ap, Spn |
Lithology (Field Name) | Designations Used in This Contribution | |
---|---|---|
Lithology (Short Name) | Intrusive Phase | |
Hornblende-bearing meladiorite | Meladiorite | Diorite |
Hornblende-bearing quartz-diorite | Quartz-diorite | |
Biotite-bearing tonalite | Biotite-tonalite | Tonalite |
Leucotonalite | Leucotonalite |
Sample | Kokko Sample (547,443, 5,525,432) 1 | Queylus Sample (543,739, 5,508,354) | |||||||
---|---|---|---|---|---|---|---|---|---|
Pyrite | Core 2 | Rim 2 | Inclusion-Rich | Inclusion-Poor | |||||
Analyses | n = 10 | n = 13 | n = 5 | n = 9 | |||||
Element | Isotope | M 3 | σ 3 | M | σ | M | σ | M | σ |
Al (ppm) | 27 | 1788.8 | 3343.0 | 874.6 | 1955.8 | 391.88 | 548.73 | 2.52 | 10.00 |
Si | 28 | 2677 | 5082.2 | 2086 | 2812.7 | 823.65 | 3437.22 | 37.42 | 5.05 |
Ca | 44 | 978.41 | 2982.7 | 571.78 | 1826.6 | 41.22 | 75.58 | 5.62 | 2.74 |
Ti | 49 | 60.41 | 149.4 | 27.19 | 1985.4 | 53.72 | 163.53 | 10.44 | 1.92 |
V | 51 | 3.04 | 45.6 | 2.43 | 26.4 | 0.96 | 8.07 | 0.05 | 0.05 |
Cr | 53 | 0.26 | 0.86 | 0.21 | 0.62 | 0.62 | 0.21 | 0.08 | 0.06 |
Mn | 55 | 16.85 | 17.52 | 12.98 | 30.54 | 5.83 | 6.02 | 0.27 | 0.49 |
Co | 59 | 470.81 | 497.7 | 255.79 | 156.2 | 1666.2 | 1290.8 | 1582.2 | 6384.1 |
Ni | 61 | 117.83 | 80.4 | 122.93 | 32.5 | 41.61 | 550.50 | 282.56 | 867.88 |
Cu | 65 | 155.53 | 1727.1 | 8.65 | 93.0 | 3184.8 | 4476.6 | 30.85 | 54.15 |
Zn | 66 | 5.06 | 34.95 | 1.60 | 4.03 | 4.34 | 2.45 | 0.13 | 0.50 |
Ga | 71 | 0.27 | 1.22 | 0.31 | 0.34 | 0.43 | 1.95 | 0.01 | 0.01 |
Ge | 72 | 1.01 | 0.09 | 1.00 | 0.31 | 0.92 | 0.09 | 0.88 | 0.07 |
As | 75 | 4.66 | 12.94 | 1.89 | 16.04 | 31.31 | 307.33 | 7.88 | 10.79 |
Se | 82 | 5.11 | 1.64 | 5.46 | 2.94 | 17.64 | 13.90 | 26.4 | 30.16 |
Ag | 107 | 4.46 | 4.34 | 0.34 | 6.89 | 1.04 | 1.01 | 0.065 | 0.34 |
Cd | 111 | 0.06 | 0.48 | 0.01 | 0.01 | 0.02 | 0.07 | n.d. 4 | |
Sn | 118 | 0.18 | 0.56 | 0.04 | 1.42 | 1.97 | 1.40 | 0.11 | 0.36 |
Sb | 121 | 0.04 | 0.01 | 0.02 | 0.04 | 0.05 | 0.36 | 0.01 | 0.01 |
Te | 126 | 8.24 | 23.60 | 3.70 | 5.13 | 55.9 | 181.74 | 8.28 | 31.97 |
Ba | 138 | 0.45 | 0.94 | 0.46 | 1.40 | 3.92 | 12.45 | 0.12 | 0.09 |
W | 182 | 0.15 | 4.99 | 0.25 | 9.09 | 0.11 | 8.38 | 0.05 | 0.32 |
Au | 197 | 0.03 | 0.01 | 0.01 | 0.05 | 0.21 | 1.29 | 0.07 | 0.07 |
Hg | 202 | 0.36 | 0.05 | 0.34 | 0.09 | 0.41 | 0.18 | 0.22 | 0.15 |
Tl | 205 | 0.01 | 0.00 | 0.01 | 0.01 | 0.015 | 0.01 | n.d. | |
Pb | 208 | 10.34 | 148.75 | 2.55 | 39.08 | 1.59 | 13.75 | 0.24 | 0.78 |
Bi | 209 | 37.02 | 33.07 | 14.82 | 16.92 | 7.77 | 12.69 | 1.035 | 7.73 |
Units | Meladiorite | Quartz-Diorite | Biotite-Tonalite | Leucotonalite | Dyke | |||||
---|---|---|---|---|---|---|---|---|---|---|
Analyses | 11 | 22 | 30 | 14 | 44 | |||||
Element | M 1 | σ 1 | M | σ | M | σ | M | σ | M | σ |
SiO2 (wt %) | 49.14 | 5.82 | 57.14 | 6.28 | 69.79 | 3.37 | 71.26 | 3.44 | 58.95 | 8.38 |
TiO2 | 0.90 | 0.51 | 0.58 | 0.27 | 0.24 | 0.16 | 0.16 | 0.11 | 0.44 | 0.30 |
Al2O3 | 17.33 | 1.38 | 17.72 | 1.51 | 15.73 | 1.38 | 15.59 | 2.10 | 16.90 | 1.92 |
CaO | 9.23 | 1.60 | 7.11 | 2.01 | 2.83 | 1.26 | 3.02 | 1.05 | 5.68 | 3.35 |
K2O | 0.71 | 0.19 | 0.85 | 0.64 | 1.52 | 1.27 | 1.73 | 1.07 | 0.50 | 1.59 |
Na2O | 2.70 | 1.05 | 3.83 | 0.85 | 4.75 | 1.13 | 5.10 | 0.80 | 3.53 | 1.99 |
MgO | 6.71 | 2.15 | 3.73 | 2.82 | 1.02 | 0.49 | 0.47 | 1.74 | 3.25 | 3.15 |
FeO | 5.71 | 2.00 | 4.05 | 1.60 | 1.20 | 0.63 | 0.55 | 0.51 | 3.62 | 2.33 |
Fe2O3 | 2.11 | 1.26 | 1.64 | 1.35 | 1.23 | 0.64 | 1.00 | 0.46 | 1.99 | 0.81 |
MnO | 0.15 | 0.06 | 0.09 | 0.03 | 0.04 | 0.02 | 0.03 | 0.01 | 0.08 | 0.05 |
P2O5 | 0.30 | 0.33 | 0.11 | 0.15 | 0.07 | 0.06 | 0.06 | 0.05 | 0.13 | 0.16 |
S | 0.08 | 0.19 | 0.04 | 0.35 | 0.04 | 0.27 | 0.02 | 0.08 | 0.07 | 0.40 |
CO2 | 0.10 | 0.41 | 0.07 | 0.32 | 0.20 | 0.83 | 0.08 | 0.54 | 0.15 | 1.78 |
H2O+ | 1.11 | 0.94 | 0.76 | 0.51 | 0.65 | 0.57 | 0.30 | 0.41 | 2.16 | 1.45 |
Total | 99.56 | 0.18 | 99.33 | 0.53 | 99.94 | 0.65 | 100.18 | 0.59 | 100.44 | 0.78 |
Rb (ppm) | 15.0 | 5.54 | 18.5 | 15.57 | 31.0 | 24.81 | 28.0 | 16.40 | 25.5 | 28.79 |
Sr | 398.0 | 121.18 | 348.0 | 191.7 | 302.0 | 241.97 | 396.0 | 291.8 | 273.0 | 212.7 |
Y | 14.0 | 8.58 | 13.0 | 4.33 | 10.0 | 3.86 | 8.0 | 2.95 | 13.0 | 4.79 |
Nb | 9.0 | 4.66 | 8.0 | 1.64 | 7.0 | 3.47 | 6.0 | 4.51 | 6.0 | 3.27 |
Zr | 87.0 | 39.64 | 80.5 | 37.24 | 102.0 | 59.77 | 83.0 | 36.46 | 94.5 | 37.85 |
Zn | 86.0 | 23.68 | 61.0 | 15.46 | 25.5 | 15.52 | 17.0 | 11.82 | 56.0 | 51.83 |
Cu | 38.0 | 26.00 | 18.0 | 9.90 | 3.5 | 253.71 | 2.0 | 2.15 | 23.0 | 83.25 |
Ni | 102.0 | 79.30 | 40.0 | 73.71 | 12.5 | 5.53 | 8.5 | 2.23 | 48.0 | 92.09 |
Cr | 130.0 | 97.23 | 43.0 | 160.5 | 20.0 | 7.10 | 15.0 | 6.97 | 41.0 | 168.8 |
Ba | 146.0 | 48.20 | 216.5 | 183.3 | 547.0 | 455.9 | 593.0 | 260.0 | 293.0 | 446.9 |
V | 145.0 | 64.61 | 105.5 | 84.20 | 23.0 | 11.95 | 10.0 | 9.20 | 96.5 | 62.71 |
Fe2O3/FeO | 0.41 | 0.14 | 0.47 | 0.28 | 1.19 | 2.15 | 1.71 | 6.41 | 0.63 | 1.92 |
ASI 2 | 1.34 | 0.09 | 1.33 | 0.10 | 1.29 | 0.22 | 1.24 | 0.11 | 1.39 | 0.34 |
Criteria | Low REE TTG | Med. REE TTG | High REE TTG | Not TTG |
---|---|---|---|---|
Criterion 1. | SiO2 > 64 wt %; (Fe2O3T + MgO + MnO + TiO2) <5 | Other values | ||
Entire dataset (n = 121; including eight reanalyzed samples) | 52 samples in total: 37 identified as tonalite in the field, one identified as diorite, and 14 dykes | 69 samples, mostly identified as diorite or dykes (and seven tonalite samples) | ||
Criterion 2. | 0 < K2O < 2 wt % | Other values | ||
52 felsic rocks | 0.5–2 wt % K2O (n = 29) | 0.13–0.46 (n = 5); 2.14–8 (n = 18) | ||
Criterion 3. | Na2O > 5 wt % | 4 < Na2O < 6 wt % | Other values | |
52 felsic rocks | 5.86 ± 0.6 (n = 26) | 4–5 (n = 20); 4–6 (n = 36) | 1.13–3.53 (n = 6) | |
Criterion 4. | 0.3 < K2O/Na2O < 0.6 | Other values | ||
52 felsic rocks | 0.3–0.6 (n = 14) | 0.02–0.28 (n = 26); 0.66–3.07 (n = 11) | ||
Criterion 5. at 70 wt % SiO2 | Al2O3 > 16 wt % | Al2O3 > 15 wt % | Al2O3 > 14 wt % | Other values |
20 samples with 69 to 71 wt % SiO2 | 16–17.83 (n = 8) | 15–17.83 (n = 19) | 14.81 (n = 1) | none |
Criterion 6. | Yb < 1 ppm | Yb < 1.5 ppm | Yb < 2 ppm | Other values |
16 tonalites with traces analyzed | 0.17–0.70 (n = 15) | all | all | none |
Criterion 7. | (La/Yb)N > 15 and La > 10 ppm | Other values | ||
16 tonalites with traces analyzed | 10.4–32.8 ppm La (n = 9); (La/Yb)N = 14.6–36.3 (n = 12); both criteria (n = 7) | (n = 9) | ||
Criterion 8. | Negative Ta, Ti, Nb anomalies, no Sr or Eu anomalies | Other values | ||
16 tonalites with traces analyzed | Most samples, except one leucotonalite without Nb–Ta anomalies, and samples (n = 3) with positive Eu anomalies | Positive Eu anomalies (n = 3) | ||
Criterion 9. | 50 < Sr/Y < 500 | 20 < Sr/Y < 200 | 10 < Sr/Y < 59 | Other values |
52 felsic rocks | >55 (n = 11) | 20–193.33 (n = 38) | 12.73–59 (n = 36) | 1.25–9.83 (n = 6) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathieu, L.; Racicot, D. Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu–Au Magmato-Hydrothermal Systems. Minerals 2019, 9, 174. https://doi.org/10.3390/min9030174
Mathieu L, Racicot D. Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu–Au Magmato-Hydrothermal Systems. Minerals. 2019; 9(3):174. https://doi.org/10.3390/min9030174
Chicago/Turabian StyleMathieu, Lucie, and Denis Racicot. 2019. "Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu–Au Magmato-Hydrothermal Systems" Minerals 9, no. 3: 174. https://doi.org/10.3390/min9030174
APA StyleMathieu, L., & Racicot, D. (2019). Petrogenetic Study of the Multiphase Chibougamau Pluton: Archaean Magmas Associated with Cu–Au Magmato-Hydrothermal Systems. Minerals, 9(3), 174. https://doi.org/10.3390/min9030174