Lithospheric Architecture and Metallogenesis in Liaodong Peninsula, North China Craton: Insights from Zircon Hf-Nd Isotope Mapping
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Tectonics
2.2. Magmatism
2.3. Mineralization
3. Methods
4. Results
4.1. Zircon Hf Isotope Features
4.2. Whole-Rock Sr-Nd Isotope Features
5. Discussion
5.1. Lithospheric Architecture of the Liaodong Peninsula
5.2. Regional Tectonic Evolution and Relation to Mineralization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.F.; Wang, Q.F.; Dilek, K.; Yang, L.Q. Isotopic characterization and petrogenetic modeling of early cretaceous mafic diking-lithospheric extension in the North China Craton, Eastern Asia. GSA Bull. 2017, 129, 1379–1407. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Guo, L.N.; Wang, Z.L.; Li, X.Z.; Li, J.L. Origin and evolution of ore fluid, and gold deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, Eastern China. Ore Geol. Rev. 2016, 72, 585–602. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Aufarb, R.J.; Yuan, W.M.; Weinberg, R.F.; Zhang, R.Z. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for Au mineralization: A case study from the Xiadian Au deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 165–178. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Guo, L.N.; Li, R.H.; Groves, D.I.; Danyushevsky, L.; Zhang, C.; Zheng, X.L.; Zhao, H. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment. Econ. Geol. 2016, 111, 105–126. [Google Scholar] [CrossRef]
- Yang, L.Q.; He, W.Y.; Gao, X.; Xie, S.X.; Yang, Z. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane, Eastern Tethys: Implications for subduction- and transtension-related metallogeny. Gondwana Res. 2018, 62, 144–162. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Wilde, S.A.; Zhang, X.O. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol. 2005, 221, 127–156. [Google Scholar] [CrossRef]
- Yu, G.; Chen, J.F.; Xue, C.J.; Chen, Y.C.; Chen, F.K.; Du, X.Y. Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China. Ore Geol. Rev. 2009, 35, 367–382. [Google Scholar] [CrossRef]
- Duan, X.; Zeng, Q.; Yang, J.; Liu, J.; Wang, Y.; Zhou, L. Geochronology, geochemistry and Hf isotope of Late Triassic magmatic rocks of Qingchengzi district in Liaodong Peninsula, Northeast China. J. Asian Earth Sci. 2014, 91, 107–124. [Google Scholar] [CrossRef]
- Zhang, P.; Li, B.; Li, J.; Chai, P.; Wang, X.; Sha, D.; Shi, J.M. Re-Os isotopic dating and its geological implication of gold bearing pyrite from the Baiyun gold deposit in Liaodong rift. Geotecton. Metallog. 2016, 40, 731–738, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.W.; Xie, H.J.; Li, D.D.; Shi, Y.; Liu, F.X.; Sun, G.Q.; Sun, Q.M.; Zhou, G.C. Prospecting prediction of ore concentration area exemplified by Qingchengzi Pb-Zn-Au-Ag ore concentration area, Eastern Liaoning Province. Miner. Depos. 2017, 36, 1–24, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.H.; Sun, J.F.; Zhang, J.H.; Wilde, S.A. Petrogenesis of Late Triassic intrusive rocks in the Northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U-Pb age and Hf-O isotope evidence. Lithos 2012, 153, 108–128. [Google Scholar] [CrossRef]
- Xiao, S.Y.; Zhu, G.; Zhang, S.; Liu, C.; Su, N.; Yi, H.; Wu, X.D.; Li, Y.J. Structural processes and dike emplacement mechanism in the Wulong gold field, eastern Liaoning. Chin. Sci. Bull. 2018, 63, 3022–3036, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, S.Z.; Liu, J.Z.; Zhao, G.C.; Wu, F.Y.; Han, Z.Z.; Yang, Z.Z. Key geochronology of Mesozoic deformation in the eastern block of the North China Craton and its constraints on regional tectonics: A case of Jiaodong and Liaodong Peninsula. Acta Petrol. Sin. 2004, 20, 633–646, (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Wang, Q.F.; Li, G.J. Tectonic evolution, superimposed orogeny, and composite metallogenic systemin China. Gondwana Res. 2017, 50, 216–266. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Li, R.H.; Groves, D.I.; Santosh, M.; Wang, Z.L.; Sai, S.X.; Wang, S.R. Regional structural control on the distribution of world-class gold deposits: An overview from the giant Jiaodong Gold Province. China Geol. J. 2017. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Qiu, K.F.; Ji, X.Z.; Santosh, M.; Song, K.R.; Song, Y.H.; Geng, J.Z.; Zhang, C.; Hua, B. Magma mixing and crust-mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: Constraints from petrology, geochemistry, and zircon U-Pb-Hf isotopic systematics. J. Asian Earth Sci. 2015, 98, 320–341. [Google Scholar] [CrossRef]
- Yang, L.Q.; Guo, L.N.; Wang, Z.L.; Zhao, R.X.; Song, M.C.; Zheng, X.L. Timing and mechanism of gold mineralization at the Wang’ershan gold deposit, Jiaodong Peninsula, Eastern China. Ore Geol. Rev. 2017, 88, 491–510. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.S.; Zhou, X.M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Griffin, W.L.; Belousova, E.A.; Shee, S.R.; Pearson, N.J.; O’reilly, S.Y. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Res. 2004, 131, 231–282. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Paterson, B.A.; Kinny, P.D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 2006, 439, 580–583. [Google Scholar] [CrossRef] [PubMed]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- Mole, D.R.; Fiorentini, M.L.; Thebaud, N.; McCuaig, T.C.; Cassidy, K.F.; Kirkland, C.L.; Wingate, M.T.D.; Romano, S.S.; Doublier, M.P.; Belousova, E.A. Spatiotemporal constraints on lithospheric development in the Southwest-Central Yilgarn Craton, Western Australia. Australian. J. Earth Sci. 2012, 59, 625–656. [Google Scholar]
- Mole, D.R.; Fiorentini, M.L.; Thebaud, N.; Cassidy, K.F.; McCuaig, T.C.; Kirkland, C.L.; Romano, S.S.; Doublier, M.P.; Belousova, E.A.; Barnes, S.J.; et al. Archean komatiite volcanism controlled by the evolution of early continents. Proc. Natl. Acad. Sci. USA 2014, 111, 10083–10088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mole, D.R.; Fiorentini, M.L.; Cassidy, K.F.; Kirkland, C.L.; Romano, N.; Maas, R.; Belousova, E.A.; Barnes, S.J.; Mill, J. Crustal Evolution, Intra-cratonic Architecture and the Metallogeny of an Archaean Craton. Geol. Soc. Lond. Spec. Pub. 2015, 393, 23–80. [Google Scholar] [CrossRef]
- Belousova, E.A.; Kostitsyn, Y.A.; Griffin, W.L.; Begg, G.C.; OReilly, S.Y.; Pearson, N.J. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos 2010, 119, 457–466. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Duan, L.F.; Lu, Y.J.; Zheng, Y.C.; Zhu, D.C.; Yang, Z.M.; Yang, Z.S.; Wang, B.D.; Pei, Y.R.; Zhao, Z.D.; et al. Lithospheric architecture of the Lhasa Terran and its control on ore deposits in the Himalayan-Tibetan Orogen. Econ. Geol. 2015, 110, 1541–1575. [Google Scholar] [CrossRef]
- Wang, C.M.; Bagas, L.; Lu, Y.J.; Santosh, M.; Du, B.; McCuaig, T.C. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Sci. Rev. 2016, 156, 39–65. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Bagas, L.; Wang, Q.F. Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen. Gondwana Res. 2017, 50, 293–310. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem. Geol. 2007, 242, 155–175. [Google Scholar] [CrossRef]
- Suo, A.; Zhao, D.Z.; Zhang, F.S.; Wang, H.R.; Liu, F.Q. Driving forces and management strategies for estuaries in Northern China. Front. Earth Sci. China 2010, 4, 51–58. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Li, S.Z.; Zhao, G.C.; Santosh, M.; Liu, X.; Dai, L.M. Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji belt, North China Craton: A review. Geol. J. 2011, 46, 525–543. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wu, L.; Shi, W.; Yang, L. (U-Th)/He thermochronology of metallic ore deposits in the Liaodong Peninsula: Implications for orefield evolution in Northeast China. Ore Geol. Rev. 2018, 92, 348–365. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Ling, H.F.; Ni, P. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Miner. Petrol. 2010, 100, 127–151. [Google Scholar] [CrossRef]
- Yang, F.C.; Song, Y.H.; Hao, L.B.; Chai, P. Late Jurassic shrimp U-Pb age and Hf isotopic characteristics of granite from the Sanjiazi area in Liaodong and their geological significance. Acta Geol. Sin. 2015, 89, 1773–1782, (In Chinese with English Abstract). [Google Scholar]
- Pei, F.P. Zircon U-Pb Chronology and Geochemistry of Mesozoic Intrusive Rocks in Southern Liaoning and Jilin Provinces: Constraints on the Spatial-Temporal Extent of the North China Craton Destruction. Ph.D. Thesis, Jilin University, Changchun, China, 2008. (In Chinese with English Abstract). [Google Scholar]
- Li, C.; Chen, B.; Li, Z.; Yang, C. Petrologic and geochemical characteristics of Paleoproterozoic monzogranitic gneisses from Xiuyan-Kuandian area in Liaodong Peninsula and their tectonic implications. Acta Petrol. Sin. 2017, 33, 963–977, (In Chinese with English Abstract). [Google Scholar]
- Song, Y.; Yang, F.; Yan, G.; Wei, M.; Shi, S. Shrimp U-Pb ages and Hf isotopic compositions of Paleoproterozoic granites from the Eastern part of Liaoning Province and their tectonic significance. Acta Geol. Sin. 2016, 90, 2620–2636, (In Chinese with English Abstract). [Google Scholar]
- Luo, Y.; Sun, M.; Zhao, G.C.; Li, S.Z.; Xu, P.; Ye, K.; Xia, X.P. LAICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton, constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Res. 2004, 134, 349–371. [Google Scholar] [CrossRef]
- Liu, J.L.; Ji, M.; Shen, L.; Guan, H.M.; Davis, G.A. Early Cretaceous extensional structures in the Liaodong peninsula: Structural associations, geochronological constraints and regional tectonic implications. Sci. China 2011, 54, 823–842. [Google Scholar] [CrossRef]
- Wu, F.Y.; Lin, J.Q.; Wilde, S.A.; Zhang, X.O.; Yang, J.H. Nature and significance of the Early Cretaceous giant igneous event in Eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A. A review of the geodynamic setting of large-scale late mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol. Rev. 2003, 23, 125–152. [Google Scholar] [CrossRef]
- Yu, G.; Yang, G.; Chen, J.; Qu, W.; Du, A.; He, W. Re-Os dating of gold-bearing arsenopyrite of the Maoling gold deposit, Liaoning province, Northeast China and its geological significance. Chin. Sci. Bull. 2005, 50, 1509–1514. [Google Scholar] [CrossRef]
- Dai, J.Z. Characteristics of ore-forming fluids and discussion on the genesis of Au, Ag deposits in Qingchengzi region, Liaoning province. Master Dissertation, Jilin University, Changchun, China, 2005. (In Chinese with English abstract). [Google Scholar]
- Li, D.D.; Wang, Y.W.; Zhou, G.C.; Shi, Y.; Xie, H.J. Preliminary analysis of the relationship between dikes and gold mineralization in Baiyun gold deposit, Liaoning. Miner. Explor. 2016, 7, 113–119, (In Chinese with English abstract). [Google Scholar]
- Jing, Y.; Jiang, S.; Zhao, K.; Ni, P.; Ling, H.; Liu, D. Shrimp U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath Eastern China. Sci. Bull. 2005, 50, 2612–2620. [Google Scholar] [CrossRef]
- Liu, J.L.; Sun, F.Y.; Zhang, Y.J.; Ma, F.; Liu, F.X.; Zeng, L. Zircon U-Pb Geochronology, Geochemistry and Hf Isotopes of Nankouqian Granitic Intrusion in Qingyuan Region, Liaoning Province. Earth Sci. 2016, 41, 55–66, (In Chinese with English Abstract). [Google Scholar]
- Song, J.Q. Geochemistry and Chronology of Alkaline Rocks in Fengcheng, Liaodong and Their Geological Implications. Master’s Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Li, S.Z.; Zhao, G.C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Res. 2007, 158, 1–16. [Google Scholar] [CrossRef]
- Ma, Y.B.; Bagas, L.; Xing, S.W.; Zhang, S.T.; Wang, R.J.; Li, N.; Zhang, Z.J.; Zou, Y.F.; Yang, X.Q.; Wang, Y.; et al. Genesis of the stratiform Zhenzigou Pb Zn deposit in the North China Craton: Rb Sr and C O S Pb isotope constraints. Ore Geol. Rev. 2016, 79, 88–104. [Google Scholar] [CrossRef]
- Liu, G.P.; Ai, Y.F. Metamorphic rock-hosted disseminated gold deposits—A case study of the xiaotongjiapuzi gold deposit of eastern liaoning. Acta Geol. Sin.-Engl. 1999, 73, 429–437. [Google Scholar]
- Xu, S.; Wang, M.; Liu, C.C.; Li, S.Y. Evaluation of gold geochemical anomalies in the liaodong paleorift. Appl. Mech. Mater. 2014, 484–485, 620–627. [Google Scholar] [CrossRef]
- Chen, J.F.; Yu, G.; Xue, C.J.; Qian, H.; He, J.F.; Xing, Z.; Zhang, X. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, Northeastern China. Sci. China 2005, 48, 467–476. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Zheng, T.; Zhang, X.; Xu, D.N. Geological characteristics and metallogenic mechanism of Yangshu large-scale Au-Ag deposits in Qingchengzi orefield primary study. Non-Ferr. Min. Metall. 2007, 23, 4–6, (In Chinese with English Abstract). [Google Scholar]
- Sun, G.Q.; Sun, Q.M.; Zheng, T. Geological characteristics and metallogenic mechanism of the Taoyuan gold deposit in Qingchengzi ore field, Liaoning. Gansu Metall. 2008, 30, 49–51, (In Chinese with English Abstract). [Google Scholar]
- Fang, J.Q.; Nie, F.J.; Zhang, K.; Liu, Y.; Xu, B. Re-Os isotopic dating on molybdenite separates and its geological significance from the Yaojiagou molybdenum deposit, Liaoning Province. Acta Petrol. Sin. 2012, 28, 372–378, (In Chinese with English Abstract). [Google Scholar]
- He, C.Z. The Characteristics of Metallogenic Fluid and Depths of Yaojiagou Porphyry-Mo Deposit in Qingchengzi Town, Liaoning Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. (In Chinese with English Abstract). [Google Scholar]
- Yu, B.; Zeng, Q.D.; Frimmel, H.E.; Wang, Y.B.; Guo, W.K.; Sun, G.T.; Zhou, T.C.; Li, J.P. Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 2018, 102, 313–337. [Google Scholar] [CrossRef]
- Hao, R.X.; Peng, S.L. Geochemical study of Wangjiawaizi gold deposit in Liaoning. Gold Geol. 1999, 5, 47–51, (In Chinese with English Abstract). [Google Scholar]
- Qu, F.F. Geology and genesis of Fenshui gold deposit. J. Precious Met. Geol. 2003, 12, 85–91, (In Chinese with English Abstract). [Google Scholar]
- Wei, J.H.; Liu, C.Q.; Tang, H.F. Rb-Sr and U-Pb isotopic systematics of pyrite and granite in Liaodong gold province, North, China: Implication for the age and genesis of a gold deposit. Geochem. J. 2003, 37, 567–577. [Google Scholar] [CrossRef]
- Zhou, G.C. Study on the Genesis of the Baiyun Gold Deposit in Liaodong, Liaoning Province. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Liu, J.; Liu, F.X.; Li, S.H.; Lai, C.K. Formation of the Baiyun gold deposit, Liaodong gold province, NE China: Constraints from zircon U–Pb age, fluid inclusion, and C-H-O-Pb-He isotopes. Ore Geol. Rev. 2019, 104, 628–655. [Google Scholar] [CrossRef]
- Qiu, K.F.; Taylor, R.D.; Song, Y.H.; Yu, H.C.; Song, K.R.; Li, N. Geologic and geochemical insights into the formation of the taiyangshan porphyry copper-molybdenum deposit, western qinling orogenic belt, China. Gondwana Res. 2016, 35, 40–58. [Google Scholar] [CrossRef]
- Geng, J.Z.; Qiu, K.F.; Gou, Z.Y.; Yu, H.C. Tectonic regime switchover of Triassic Western Qinling orogen: Constraints from LA-ICP-MS zircon U–Pb geochronology and Lu–Hf isotope of Dangchuan intrusive complex in Gansu, China. Chem. Erde Geochem. 2017, 77, 637–651. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Gou, Z.Y.; Liang, Z.L.; Zhang, J.L.; Zhu, R. Nature and origin of triassic igneous activity in the western qinling orogen: The wenquan composite pluton example. Int. Geol. Rev. 2018, 60, 242–266. [Google Scholar] [CrossRef]
- Scherer, E.; Münker, C.; Mezger, K. Calibration of the lutetium-hafnium clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Blichert-Toft, J.; Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of themantle–crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Taylor, R.D.; Song, K.R.; Song, Y.H.; Li, Q.Z.; Goldfarb, R.J. Paleozoic magmatism and porphyry cu-mineralization in an evolving tectonic setting in the north qilian orogenic belt, nw china. J. Asian Earth Sci. 2016, 122, 20–40. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J. Petrogenesis of granitoids in the dewulu skarn copper deposit: Implications for the evolution of the paleotethys ocean and mineralization in western qinling, china. Ore Geol. Rev. 2017, 99, 1078–1098. [Google Scholar] [CrossRef]
- Erdogan, S. A comparision of interpolation methods for producing digital elevation models at the field scale. Earth Surf. Proc. Land. 2010, 34, 366–376. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Bagas, L.; Santosh, M.; Yao, E. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth-Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.Q.; Orovan, E.A. The lithospheric architecture of two subterranes in the eastern Yidun Terrane, East Tethys: Insights from Hf-Nd isotopic mapping. Gondwana Res. 2018. [Google Scholar] [CrossRef]
- Wang, C.M.; Bagas, L.; Deng, J.; Dong, M. Crustal architecture and its controls on mineralization in the North China Craton. Ore Geol. Rev. 2018. [Google Scholar] [CrossRef]
- Li, H.Y.; Xu, Y.G.; Liu, Y.M.; Huang, X.L.; He, B. Detrital zircons reveal no Jurassic plateau in the Eastern North China Craton. Gondwana Res. 2013, 24, 622–634. [Google Scholar] [CrossRef]
- Hall, H.C.; Fahrig, W.F. Mafic dyke swarms. Geol. Assoc. Can. Spec. 1987, 34, 1–503. [Google Scholar]
- Zhao, J.X.; McCulloch, M.T. Melting of a subduction-modified continental lithospheric mantle, evidence from late Proterozoic mafic dike swarms in central Australia. Geology 1993, 21, 463–466. [Google Scholar] [CrossRef]
- Rowley, D.B.; Xue, F.; Tucker, R.D.; Peng, Z.X.; Baker, J.; Davis, A. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the Eastern Dabie Shan: U/Pb zircon geochronology. Earth Planet. Sci. Lett. 1997, 151, 191–203. [Google Scholar] [CrossRef]
- Li, S.G.; Jagoutz, E.; Chen, Y. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim. Cosmochim. Acta 2000, 64, 1077–1093. [Google Scholar] [CrossRef]
- Wan, Y.S.; Li, R.W.; Wilde, S.A.; Liu, D.Y.; Chen, Z.Y.; Yan, L.; Song, T.R.; Yin, X.Y. UHP metamorphism and exhumation of the Dabie Orogen, China, evidence from SHRIMP dating of zircon and monazite from UHP granitic gneiss cobble from the Hefei Basin. Geochim. Cosmochim. Acta 2005, 69, 4333–4348. [Google Scholar] [CrossRef]
- Yang, J.H.; O’reilly, S.; Walker, R.J.; Griffin, W.; Wu, F.Y.; Zhang, M.; Pearson, N. Diachronous decratonization of the Sino-Korean Craton, geochemistry of mantle xenoliths from North Korea. Geology 2010, 38, 799–802. [Google Scholar] [CrossRef]
- Gilder, S.A.; Gill, J.; Coe, R.S.; Zhao, X.X.; Liu, Z.; Wang, G. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Geophys. Res. 1996, 101, 16137–16154. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Wang, R.; Tafti, R.; Hou, Z.Q.; Shen, Z.C.; Guo, N.; Evans, N.J.; Jeon, H.; Li, Q.Y.; Li, W.K. Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization. Chem. Geol. 2017, 451, 116–134. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Z.G.; Liu, D.Y.; Li, W.X. Jurassic gabbro-granite-syenite suites from southern Jiangxi Province, SE China: Age, origin, and tectonic significance. Int. Geol. Rev. 2003, 45, 898–921. [Google Scholar] [CrossRef]
- Zhuang, L.; Pei, F.P.; Meng, E. Zircon U-Pb age, geochemical and Nd isotopic data of Middle Jurassic high-mg dioritic dike in Liaodong peninsula, NE China. Glob. Geol. 2014, 17, 143–154. [Google Scholar]
- Wilde, S.A.; Zhou, X.H.; Nemchin, A.A.; Sun, M. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 2003, 31, 817–820. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Kou, L.L.; Bi, Z.W.; Yang, H.Z. Sulfur-lead Isotopic Composition of the Maoling Gold Deposit in Liaodong, and its Geological Implications. Geol. Rev. 2017, 63, 175–176, (In Chinese with English Abstract). [Google Scholar]
Period | No. | Pluton | Phase | Age/Ma | Sample | Method | References |
---|---|---|---|---|---|---|---|
Cretaceous | 1 | Wulongbei | Quartz diorite | 126–127 | Zircon | SHRIMP U-Pb | [7] |
2 | Sanguliu | Porphyritic granite | 125 ± 3 | Zircon | SHRIMP U-Pb | [7] | |
3 | Yinmawanshan | Gneissic granodiorite | 122 ± 2 | Zircon | LA-ICP-MS U-Pb | [7] | |
Yinmawanshan | Monzogranite (dike) | 124 ± 5 | Zircon | LA-ICP-MS U-Pb | [7] | ||
Yinmawanshan | Monzogranite | 122 ± 6 | Zircon | LA-ICP-MS U-Pb | [7] | ||
4 | Qianshan | Granite | 126 ± 2 | Zircon | LA-ICP-MS U-Pb | [32] | |
Jurassic | 5 | Xiaoheshan | Granodiorite | 173–174 ± 4 | Zircon | LA-ICP-MS U-Pb | [7] |
6 | Hanjialing | Granodiorite | 179 ± 3 | Zircon | LA-ICP-MS U-Pb | [7] | |
Monzogranite | 164 ± 4 | Zircon | LA-ICP-MS U-Pb | [7] | |||
7 | Yutun | Mylonitic granite | 157 ± 3 | Zircon | LA-ICP-MS U-Pb | [7] | |
8 | Heigou | Monzogranite | 161 ± 6, 163 ± 7 | Zircon | LA-ICP-MS U-Pb | [7] | |
9 | Jiuliancheng | Monzogranite | 156 ± 3 | Zircon | LA-ICP-MS U-Pb | [7] | |
10 | Gaoliduntai | Plagiogranite | 156 ± 5 | Zircon | LA-ICP-MS U-Pb | [7] | |
11 | Baiyun gold mine | Porphyritic dyke | 168 ± 3 | Zircon | LA-ICP-MS U-Pb | [7] | |
12 | Huaziyu | Lamprophyres | 155 ± 4 | Zircon | LA-ICP-MS U-Pb | [47] | |
13 | Waling | Monzonitic granite | 162.4 ± 1.9 | Zircon | SHRIMP U-Pb | [36] | |
14 | Dandong | Granite | 157–167 | Zircon | LA-ICP-MS U-Pb | [14] | |
Triassic | 15 | Shuangdinggou | biotite monzogranite | 224.2 ± 1.2 | Zircon | LA-ICP-MS U-Pb | [9] |
16 | Xinling | Granites | 225.3 ± 1.8 | Zircon | SHRIMP U-Pb | [8] | |
17 | Xiuyan | Monzogranite | 210 ± 1 | Zircon | LA-ICP-MS U-Pb | [30] | |
18 | Nankouqian | Monzogranite | 224 ± 2 | Zircon | SIMS | [12] | |
Monzogranite | 221 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |||
Granite | 224 ± 1 | Zircon | LA-ICP-MS U-Pb | [48] | |||
Triassic | 19 | Mayihe | Pyroxene diorite | 222 ± 2 | Zircon | SIMS | [12] |
Pyroxene syenodiorite | 223 ± 2 | Zircon | SIMS | [12] | |||
Fine-grained diorite | 222 ± 2 | Zircon | SIMS | [12] | |||
Biotite monzogranite | 220 ± 2, 223 ± 3, 221 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |||
20 | Xidadingzi | Monzogranite | 220 ± 2, 221 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |
21 | Chaxinzi | Monzogranite | 222 ± 2, 219 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |
Diorite | 219 ± 4 | Zircon | LA-ICP-MS U-Pb | [12] | |||
Monzodiorite | 222 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |||
Diorite | 221 ± 2 | Zircon | SIMS | [12] | |||
Granodiorite | 222 ± 1 | Zircon | SIMS | [12] | |||
22 | Xiaoweishahe | Granodiorite | 218 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |
Quartz diorite | 220 ± 2, 219 ± 4 | Zircon | LA-ICP-MS U-Pb | [12] | |||
23 | Longtou | Granodiorite | 224 ± 2 | Zircon | SIMS | [12] | |
Granodiorite | 220 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |||
Fine-grained granite | 221 ± 2 | Zircon | LA-ICP-MS U-Pb | [12] | |||
24 | Qingchengzi | Lamprophyres | 224–230 | Zircon | LA-ICP-MS U-Pb | [9] | |
25 | Saima | Syenite | 222 ± 3.4 | Zircon | LA-ICP-MS U-Pb | [49] | |
Syenite | 221 ± 2.3 | Zircon | LA-ICP-MS U-Pb | [49] | |||
26 | Bailinchuan | Syenite | 221 ± 2.3 | Zircon | LA-ICP-MS U-Pb | [49] | |
Paleo-proterozoic | 27 | Jiguanshan | Granite | 2175 ± 13 | Zircon | SHRIMP U-Pb | [38,50] |
28 | Laoheishan | Granite | 2166 ± 14 | Zircon | SHRIMP U-Pb | [38,50] | |
29 | Dadingzi | Granite | 1869 ± 16 | Zircon | SHRIMP U-Pb | [39] | |
30 | Wuleishan | Granite | 1830.5 ± 5.9 | Zircon | SHRIMP U-Pb | [39] | |
31 | Simenzi | Granite | 2157 ± 14 | Zircon | SHRIMP U-Pb | [39] | |
32 | Gujiapu | Granite | 2169 ± 11 | Zircon | SHRIMP U-Pb | [39] |
Number | Deposits | Orefield | Type | Metallic Comm. | Tonnage (t) | Grade | Host Rock | Age (Ma) | Data Source |
---|---|---|---|---|---|---|---|---|---|
1 | Zhenzigou | Qingchengzi | Magmatic hydrothermal | Pb-Zn | 0.37, 450 | Marble, Amphibolite, Schist | 221 | [8,51] | |
2 | Nanshan | Qingchengzi | Magmatic hydrothermal | Pb-Zn | 0.5, 153 | 227 | [9,11] | ||
3 | Diannan | Qingchengzi | Magmatic hydrothermal | Pb-Zn | 0.08, 650 | 232 | [11] | ||
4 | Xiquegou | Qingchengzi | Magmatic hydrothermal | Pb-Zn | 0.28, 250 | 225 | [8,11] | ||
5 | Baiyun | Qingchengzi | Magmatic hydrothermal | Au | 31.7 | 2.85 g/t | Metamorphic rock and quartz veins | 225 | [10,11] |
6 | Xiaotongjiapuzi | Qingchengzi | Magmatic hydrothermal | Au-Ag | 20–50 | 0.07~2.92, 0.14~6.12 | Marble | 239 | [11,43,52,53] |
7 | Gaojiapuzi | Qingchengzi | Magmatic hydrothermal | Ag | 312 | Marble | 240 | [11,45,52,54] | |
8 | Yangshu | Qingchengzi | Magmatic hydrothermal | Au-Ag | 3.72 | 1.61, 3.72 | Metamorphic rock and marble | [11,55] | |
9 | Taoyuan | Qingchengzi | Magmatic hydrothermal | Au-Ag | 0.005~0.06, 0.0025~0.1 | Metamorphic rock | [11,56] | ||
10 | Baiyundasandaogou | Qingchengzi | Magmatic hydrothermal | Au-Ag | 7.28, 1.28 | [11,54] | |||
11 | Linjiasandaogou | Qingchengzi | Magmatic hydrothermal | Au | 0.031, 0.034 | Metamorphic rock | [11,56] | ||
12 | Yaojiagou | Qingchengzi | porphyry | Mo | 0.34 | Metamorphic rock and skarn | 168 | [57,58] | |
13 | Sidaogou | Wulong | Magmatic hydrothermal | Au | 20–50 | Metamorphic rock | [43] | ||
14 | Wulong | Wulong | Magmatic hydrothermal | Au | >40 | Metamorphic rock and quartz veins | 122 | [43,59] | |
15 | Wangjiawaizi | Maoling | Magmatic hydrothermal | Au-Ag | >5 | 8.9, 16.9 | Metamorphic rock, quartz veins and Breccia | [60] | |
16 | Maoling | Maoling | Magmatic hydrothermal | Au | 25 | 3.2 g/t | Metamorphic rock and quartz veins | 196 | [44] |
17 | Fenshui | Maoling | Magmatic hydrothermal | Au | 1.8 | 3~5 | Quartz veins | 186 | [61] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, Y.; Li, D.; Lai, C. Lithospheric Architecture and Metallogenesis in Liaodong Peninsula, North China Craton: Insights from Zircon Hf-Nd Isotope Mapping. Minerals 2019, 9, 179. https://doi.org/10.3390/min9030179
Zhang Z, Wang Y, Li D, Lai C. Lithospheric Architecture and Metallogenesis in Liaodong Peninsula, North China Craton: Insights from Zircon Hf-Nd Isotope Mapping. Minerals. 2019; 9(3):179. https://doi.org/10.3390/min9030179
Chicago/Turabian StyleZhang, Zhichao, Yuwang Wang, Dedong Li, and Chunkit Lai. 2019. "Lithospheric Architecture and Metallogenesis in Liaodong Peninsula, North China Craton: Insights from Zircon Hf-Nd Isotope Mapping" Minerals 9, no. 3: 179. https://doi.org/10.3390/min9030179
APA StyleZhang, Z., Wang, Y., Li, D., & Lai, C. (2019). Lithospheric Architecture and Metallogenesis in Liaodong Peninsula, North China Craton: Insights from Zircon Hf-Nd Isotope Mapping. Minerals, 9(3), 179. https://doi.org/10.3390/min9030179