Multiple Magma Conduits Model of the Jinchuan Ni-Cu-(PGE) Deposit, Northwestern China: Constraints from the Geochemistry of Platinum-Group Elements
Abstract
:1. Introduction
2. Geological Setting
3. Petrology and Sulfide Mineralization of the Jinchuan Deposit
4. Sampling and Analytical Methods
5. Results
5.1. Whole Rock Major and Trace Elements
5.2. Nickel, Copper, and Platinum-Group Elements
5.3. PCA and PLS-DA Results
6. Discussion
6.1. Prior Sulfide Segregation
6.2. Spatial Variation of R-Factor and PGE Tenors
6.3. Massive Sulfide Fractionation at Jinchuan
6.4. Multiple Magma Conduits Model for the Jinchuan Deposit
7. Conclusions
- (1)
- The parental magma of the Jinchuan intrusion was made up of high Mg picritic basalts, which were depleted in PGEs due to sulfide removal (0.0075% prior sulfide removal for the western intrusion, 0.0085% for segment II-W and 0.011% for segment II-E) from picritic basalt (100 ppm Cu, 1 ppb Ir and 10 ppb Pd) before emplacement.
- (2)
- The disseminated and net-textured sulfides from the Jinchuan deposit were formed by sulfide segregation from PGE-depleted magma under a similar range of R-factors (100 to 50,000), where the metal ratios (Pt/Pd and (Pt + Pd)/(Ir + Ru + Rh)) decrease towards both sides of F8 in the western intrusion and the center in segment II-W, but show no lateral variation in segment II-E.
- (3)
- The massive sulfides in segments I and II-E were formed by the ~20% to 40% and ~40% to 60% fractionation of sulfide melt, respectively, and the latter crystallized from the base upward.
- (4)
- Three individual magma conduits (east of segment III, center of segment II-W and beneath segment II-E) contributed to the formation of sulfide ores in the western intrusion and segments II-W and II-E, respectively.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larocque, A.C.L.; Stimac, J.A.; Keith, J.D.; Huminicki, M.A.E. Evidence for open-system behavior in immiscible Fe–S–O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 2000, 38, 1233–1249. [Google Scholar] [CrossRef]
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–744. [Google Scholar]
- Barnes, S.J.; Cruden, A.R.; Arndt, N.; Saumur, B.M. The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geol. Rev. 2016, 76, 296–316. [Google Scholar] [CrossRef]
- Li, C.S.; Naldrett, A.J. Geology and petrology of the Voisey’s Bay intrusion: Reaction of olivine with sulfide and silicate liquids. Lithos 1999, 47, 1–31. [Google Scholar] [CrossRef]
- Li, C.S.; Naldrett, A.J. Melting reactions of gneissic inclusions with enclosing magma at Voisey’s Bay, Labrador, Canada: Implications with respect to ore genesis. Econ. Geol. 2000, 95, 801–814. [Google Scholar] [CrossRef]
- Evans-Lamswood, D.M.; Butt, D.P.; Jackson, R.S.; Lee, D.V.; Muggridge, M.G.; Wheeler, R.I.; Wilton, D.H.C. Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu-Co deposit, Labrador. Econ. Geol. 2000, 95, 749–769. [Google Scholar] [CrossRef]
- Ding, X.; Ripley, E.M.; Li, C.S. PGE geochemistry of the Eagle Ni–Cu–(PGE) deposit, Upper Michigan: Constraints on ore genesis in a dynamic magma conduit. Miner. Depos. 2012, 47, 89–104. [Google Scholar] [CrossRef]
- Ding, X.; Ripley, E.M.; Shirey, S.B.; Li, C.S. Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu–Ni–(PGE) deposit, Midcontinent Rift System, Upper Michigan. Geochim. Cosmochim. Acta 2012, 89, 10–30. [Google Scholar] [CrossRef]
- Gao, J.F.; Zhou, M.F.; Lightfoot, P.C.; Wang, C.Y.; Qi, L.; Sun, M. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Econ. Geol. 2013, 108, 1833–1848. [Google Scholar] [CrossRef]
- Gao, J.F.; Zhou, M.F. Generation and evolution of siliceous high magnesium basaltic magmas in the formation of the Permian Huangshandong intrusion (Xinjiang, NW China). Lithos 2013, 162, 128–139. [Google Scholar] [CrossRef]
- Mao, Y.J.; Qin, K.Z.; Li, C.S.; Tang, D.M. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China. Miner. Depos. 2015, 50, 65–82. [Google Scholar] [CrossRef]
- Barnes, S.J.; Lightfoot, P.C. Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents. Econ. Geol. 100th Anniv. 2005, 179–213. [Google Scholar]
- Song, X.Y.; Keays, R.R.; Zhou, M.F.; Qi, L.; Ihlenfeld, C.; Xiao, J.F. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochim. Cosmochim. Acta 2009, 73, 404–424. [Google Scholar] [CrossRef]
- Naldrett, A.J. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Miner. Depos. 1999, 34, 227–240. [Google Scholar] [CrossRef]
- Li, C.S.; Maier, W.D.; De Waal, S.A. Magmatic Ni-Cu versus PGE deposits: Contrasting genetic controls and exploration implications. S. Afr. J. Geol. 2001, 104, 309–318. [Google Scholar] [CrossRef]
- Su, S.G.; Li, C.S.; Zhou, M.F.; Ripley, E.M.; Qi, L. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China. Miner. Depos. 2008, 43, 609–622. [Google Scholar] [CrossRef]
- Duan, J.; Li, C.S.; Qian, Z.; Jiao, J.; Ripley, E.M.; Feng, Y. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Miner. Depos. 2016, 51, 557–574. [Google Scholar] [CrossRef]
- Mungall, J.E.; Andrews, D.R.A.; Cabri, L.J.; Sylvester, P.J.; Tubrett, M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim. Cosmochim. Acta 2005, 69, 4349–4360. [Google Scholar] [CrossRef] [Green Version]
- Li, C.S.; Barnes, S.J.; Makovicky, E.; Rose-Hansen, J.; Makovicky, M. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochim. Cosmochim. Acta 1996, 60, 1231–1238. [Google Scholar] [CrossRef]
- Bockrath, C.; Ballhaus, C.; Holzheid, A. Fractionation of the platinum-group elements during mantle melting. Science 2004, 305, 1951–1953. [Google Scholar] [CrossRef]
- Yang, A.Y.; Zhao, T.P.; Qi, L.; Yang, S.H.; Zhou, M.F. Chalcophile elemental constraints on sulfide-saturated fractionation of Cenozoic basalts and andesites in SE China. Lithos 2011, 127, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Zhou, T.; Zhang, D.; Jowitt, S.M.; Keays, R.R.; Liu, S.; Fan, Y. Siderophile and chalcophile metal variations in basalts: Implications for the sulfide saturation history and Ni–Cu–PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geol. Rev. 2012, 45, 5–15. [Google Scholar] [CrossRef]
- Huang, X.W.; Su, B.X.; Zhou, M.F.; Gao, J.F.; Qi, L. Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity. Lithos 2017, 282, 215–227. [Google Scholar] [CrossRef]
- Krivolutskaya, N.; Tolstykh, N.; Kedrovskaya, T.; Naumov, K.; Kubrakova, I.; Tyutyunnik, O.; Gongalsky, B.; Kovalchuk, E.; Magazina, L.; Bychkova, Y. World-Class PGE-Cu-Ni Talnakh Deposit: New Data on the Structure and Unique Mineralization of the South-Western Branch. Minerals 2018, 8, 124. [Google Scholar] [CrossRef]
- Tang, Z.L.; Song, X.Y.; Su, S.G. Ni–Cu Deposits Related to High-Mg Basaltic Magma, Jinchuan, Western China; Geological Publishing House: Beijing, China, 2009; pp. 121–140. (In Chinese) [Google Scholar]
- Naldrett, A.J. Key factors in the genesis of Noril’sk, Sudbury, Jinchuan, Voisey’s Bay and other world-class Ni-Cu-PGE deposits: Implications for exploration. Aust. J. Earth Sci. 1997, 44, 283–315. [Google Scholar] [CrossRef]
- Song, X.Y.; Wang, Y.S.; Chen, L.M. Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems: Features, formation and exploration. Geosci. Front. 2011, 2, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, P.C.; Evans-Lamswood, D. Structural controls on the primary distribution of mafic–ultramafic intrusions containing Ni–Cu–Co–(PGE) sulfide mineralization in the roots of large igneous provinces. Ore Geol. Rev. 2015, 64, 354–386. [Google Scholar] [CrossRef]
- Chai, G.; Naldrett, A.J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China. Econ. Geol. 1992, 87, 1475–1495. [Google Scholar] [CrossRef]
- Chai, G.; Naldrett, A.J. The Jinchuan ultramafic intrusion: Cumulate of a high-Mg basaltic magma. J. Petrol. 1992, 33, 277–303. [Google Scholar] [CrossRef]
- Tang, Z.L.; Li, W.Y. The Metallogenetic Model and Geological Characteristics of the Jinchuan Pt-Bearing Ni-Cu Sulfide Deposit; Geological Publishing House: Beijing, China, 1995; p. 209. (In Chinese) [Google Scholar]
- De Waal, S.A.; Xu, Z.; Li, C.S.; Mouri, H. Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, western China. Can. Mineral. 2004, 42, 371–392. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhou, M.F.; Wang, C.Y.; Qi, L.; Zhang, C.J. Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni-Cu-(PGE) sulfide deposit, northwest China. Int. Geol. Rev. 2006, 48, 1113–1132. [Google Scholar] [CrossRef]
- Yang, X.Z.; Ishihara, S.; Matsueda, H. Multiphase melt inclusions in the Jinchuan complex, China: Implications for petrogenic and metallogenic physico-chemical conditions. Int. Geol. Rev. 1998, 40, 335–349. [Google Scholar] [CrossRef]
- Song, X.Y.; Keays, R.R.; Chen, L.M.; Wang, Y.S.; Tian, Y.L.; Xiao, J.F. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni–Cu sulfide deposit, NW China. Miner. Depos. 2012, 47, 277–297. [Google Scholar] [CrossRef]
- Chen, L.M.; Song, X.Y.; Keays, R.R.; Tian, Y.L.; Wang, Y.S.; Deng, Y.F.; Xiao, J.F. Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: Insights from platinum group element geochemistry. Econ. Geol. 2013, 108, 1793–1811. [Google Scholar] [CrossRef]
- Li, C.S.; Xu, Z.; de Waal, S.A.; Ripley, E.M.; Maier, W.D. Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: Implications for ore genesis. Miner. Depos. 2004, 39, 159–172. [Google Scholar] [CrossRef]
- Xiu, Q.; Yu, H.; Li, Q.; Zuo, G.; Li, J.; Cao, C. Discussion on the petrogenic time of Longshoushan Group, Gansu Province. Acta Geol. Sin. 2004, 78, 366–373. (In Chinese) [Google Scholar]
- Geng, Y.S.; Wang, X.S.; Shen, Q.H.; Wu, C.M. Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia. Geol. China 2007, 34, 251–261. (In Chinese) [Google Scholar]
- Zeng, R.Y.; Lai, J.Q.; Mao, X.C.; Li, B.; Zhang, J.D.; Bayless, R.; Yang, L.Z. Paleoproterozoic Multiple Tectonothermal Events in the Longshoushan Area, Western North China Craton and Their Geological Implication: Evidence from Geochemistry, Zircon U–Pb Geochronology and Hf Isotopes. Minerals 2018, 8, 361. [Google Scholar] [CrossRef]
- Zeng, R.Y.; Lai, J.Q.; Mao, X.C.; Li, B.; Ju, P.J.; Tao, S.L. Geochemistry, zircon U–Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication. J. Asian Earth Sci. 2016, 121, 20–33. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Su, L.; Xia, X. Tectonics of the north Qilian orogen, NW China. Gondwana Res. 2013, 23, 1378–1401. [Google Scholar] [CrossRef]
- Li, X.; Su, L.; Chung, S.L.; Li, Z.X.; Liu, Y.; Song, B.; Liu, D. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume? Geochem. Geophys. Geosyst. 2005, 6, 1–16. [Google Scholar] [CrossRef]
- Zhang, M.; Kamo, S.L.; Li, C.; Hu, P.; Ripley, E.M. Precise U–Pb zircon–baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China. Miner. Depos. 2010, 45, 3–9. [Google Scholar] [CrossRef]
- Duan, J.; Li, C.S.; Qian, Z.; Jiao, J. Geochronological and geochemical constraints on the petrogenesis and tectonic significance of Paleozoic dolerite dykes in the southern margin of Alxa Block, North China Craton. J. Asian Earth Sci. 2015, 111, 244–253. [Google Scholar] [CrossRef]
- Duan, J.; Qian, Z.; Jiao, J.; Lu, H.; Feng, Y. Genesis of Xijing intrusion from Longshoushan terrane and the tectonic significance. J. Jilin Univ. (Earth Sci. Ed.) 2015, 45, 832–846. (In Chinese) [Google Scholar]
- He, H.L.; Lu, C.F.; Zhou, Z.R.; Shi, S.Y.; Li, B. Determination of platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay–ICPMS. Rock Miner. Anal. 2001, 20, 191–194. (In Chinese) [Google Scholar]
- Qi, L.; Zhou, M.; Wang, C.Y. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS. J. Anal. Atom. Spectrom. 2004, 19, 1335–1339. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall Ltd.: London, UK, 1986; pp. 1–416. [Google Scholar]
- Koch, I. Analysis of Multivariate and High-Dimensional Data; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Makvandi, S.; Ghasemzadeh-Barvarz, M.; Beaudoin, G.; Grunsky, E.C.; McClenaghan, M.B.; Duchesne, C. Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geol. Rev. 2016, 72, 60–85. [Google Scholar] [CrossRef]
- Makvandi, S.; Ghasemzadeh-Barvarz, M.; Beaudoin, G.; Grunsky, E.C.; McClenaghan, M.B.; Duchesne, C.; Boutroy, E. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geol. Rev. 2016, 78, 388–408. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Xu, G.; Tang, Z.L.; Qian, Z.Z.; Jiao, J.G.; Wei, X. Ores genesis in Jinchuan Ni—Cu—(PGE) sulfide deposit: Evidence from geochemistry of platinum group elements. Glob. Geol. 2012, 31, 493–504. (In Chinese) [Google Scholar]
- Naldrett, A.J.; Duke, J.M. Platinum metals in magmatic sulfide ores. Science 1980, 208, 1417–1424. [Google Scholar] [CrossRef]
- Naldrett, A.J.; Asif, M.; Krstic, S.; Li, C. The composition of mineralization at the Voisey’s Bay Ni-Cu sulfide deposit, with special reference to platinum-group elements. Econ. Geol. 2000, 95, 845–865. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Keays, R.R.; Evans-Lamswood, D.; Wheeler, R. S saturation history of Nain Plutonic Suite mafic intrusions: Origin of the Voisey’s Bay Ni–Cu–Co sulfide deposit, Labrador, Canada. Miner. Depos. 2012, 47, 23–50. [Google Scholar] [CrossRef]
- Li, C.S.; Tao, Y.; Qi, L.; Ripley, E.M. Controls on PGE fractionation in the Emeishan picrites and basalts: Constraints from integrated lithophile–siderophile elements and Sr–Nd isotopes. Geochim. Cosmochim. Acta 2012, 90, 12–32. [Google Scholar] [CrossRef]
- Campbell, I.H.; Naldrett, A.J. The influence of silicate: Sulfide ratios on the geochemistry of magmatic sulfides. Econ. Geol. 1979, 74, 1503–1506. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Keays, R.R.; Doherty, W. Chemical evolution and origin of nickel sulfide mineralization in the Sudbury Igneous Complex, Ontario, Canada. Econ. Geol. 2001, 96, 1855–1875. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Keays, R.R. Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril’sk region: Implications for the origin of the Ni-Cu-PGE sulfide ores. Econ. Geol. 2005, 100, 439–462. [Google Scholar] [CrossRef]
- Krivolutskaya, N.; Sobolev, A.; Mikhailov, V.; Plechova, A.; Kostitsyn, Y.A.; Roschina, I.; Fekiacova, Z. Parental melt of the Nadezhdinsky Formation: Geochemistry, petrology and connection with Cu-Ni deposits (Noril’sk area, Russia). Chem. Geol. 2012, 302, 87–105. [Google Scholar] [CrossRef]
- Krivolutskaya, N.A.; Latyshev, A.V.; Dolgal, A.S.; Gongalsky, B.I.; Makarieva, E.M.; Makariev, A.A.; Svirskaya, N.M.; Bychkova, Y.V.; Yakushev, A.I.; Asavin, A.M. Unique PGE–Cu–Ni Noril’sk Deposits, Siberian Trap Province: Magmatic and Tectonic Factors in Their Origin. Minerals 2019, 9, 66. [Google Scholar] [CrossRef]
- Chen, L.M.; Song, X.Y.; Danyushevsky, L.V.; Xiao, J.F.; Li, S.B.; Guan, J.X. Correlation between Ni and MgO contents of olivine in Segment I of the Jinchuan intrusion, NW China, and its geological implication. Acta Petrol. Sin. 2009, 25, 3369–3378. (In Chinese) [Google Scholar]
- Keays, R.R.; Lightfoot, P.C. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Miner. Depos. 2007, 42, 319–336. [Google Scholar] [CrossRef]
- Barnes, S.J.; Couture, J.F.; Sawyer, E.W.; Bouchaib, C. Nickel-copper occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the use of Cu-Pd ratios in interpreting platinum-group element distributions. Econ. Geol. 1993, 88, 1402–1418. [Google Scholar] [CrossRef]
- Brügmann, G.E.; Naldrett, A.J.; Asif, M.; Lightfoot, P.C.; Gorbachev, N.S.; Fedorenko, V.A. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril’sk region, Russia. Geochim. Cosmochim. Acta 1993, 57, 2001–2018. [Google Scholar] [CrossRef]
- Barnes, S.J.; Melezhik, V.A.; Sokolov, S.V. The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia. Can. Mineral. 2001, 39, 447–471. [Google Scholar] [CrossRef]
- Redman, B.A.; Keays, R.R. Archaean basic volcanism in the eastern Goldfields province, Yilgarn Block, western Australia. Precambrian Res. 1985, 30, 113–152. [Google Scholar] [CrossRef]
- Neumann, H.; Mead, J.; Vitaliano, C.J. Trace element variation during fractional crystallization as calculated from the distribution law. Geochim. Cosmochim. Acta 1954, 6, 90–99. [Google Scholar] [CrossRef]
- Peach, C.L.; Mathez, E.A. Sulfide melt-silicate melt distribution coefficients for nickel and iron and implications for the distribution of other chalcophile elements. Geochim. Cosmochim. Acta 1993, 57, 3013–3021. [Google Scholar] [CrossRef]
- Peach, C.; Mathez, E.A.; Keays, R.R.; Reeves, S.J. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chem. Geol. 1994, 117, 361–377. [Google Scholar] [CrossRef]
- Barnes, S.J.; Boyd, R.; Korneliussen, A.; Nilsson, L.P.; Often, M.; Pedersen, R.B.; Robins, B. The Use of Mantle Normalization and Metal Ratios in Discriminating between the Effects of Partial Melting, Crystal Fractionation and Sulphide Segregation on Platinum-Group Elements, Gold, Nickel and Copper: Examples from Norway; Geo-platinum 87; Springer: Dordrecht, The Netherlands, 1988; pp. 113–143. [Google Scholar]
- Gorbachev, N.S. Mineralogical and geochemical zoning and genesis of massive sulfide ores at the Oktyabr’sky deposit. Geol. Ore Depos. 2006, 48, 473–488. [Google Scholar] [CrossRef]
- Krivolutskaya, N.A. Mineralogicaland geochemical characteristics of PGE-Cu-Ni ores of the Maslovsky deposit in the Noril’sk area, Russia. Can. Mineral. 2011, 49, 1479–1504. [Google Scholar] [CrossRef]
- Duran, C.J.; Barnes, S.J.; Pleše, P.; Prašek, M.K.; Zientek, M.L.; Pagé, P. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia). Ore Geol. Rev. 2017, 90, 326–351. [Google Scholar] [CrossRef]
- Li, C.S.; Naldrett, A.J. A numerical model for the compositional variations of Sudbury sulfide ores and its application of exploration. Econ. Geol. 1994, 89, 1599–1607. [Google Scholar] [CrossRef]
- Naldrett, A.J.; Asif, M.; Scandl, E.; Searcy, T.; Morrison, G.G.; Binney, W.P.; Moore, C. Platinum-group elements in the Sudbury ores; significance with respect to the origin of different ore zones and to the exploration for footwall orebodies. Econ. Geol. 1999, 94, 185–210. [Google Scholar] [CrossRef]
- Fleet, M.E.; Pan, Y. Fractional crystallization of anhydrous sulfide liquid in the system Fe-Ni-Cu-S, with application to magmatic sulfide deposits. Geochim. Cosmochim. Acta 1994, 58, 3369–3377. [Google Scholar] [CrossRef]
Segment | Sample | Ore Type | Os (ppb) | Ir (ppb) | Ru (ppb) | Rh (ppb) | Pt (ppb) | Pd (ppb) | Cu (wt.%) | Ni (wt.%) | S (wt.%) | Pd/Ir | ΣPPGE/ΣIPGE | Cu/Pd/1000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Detected limit | 0.007 | 0.013 | 0.02 | 0.001 | 0.026 | 0.06 | 0.0005 | 0.0003 | 0.0001 | |||||
Relative standard deviation (RSD, %) | 4.2 | 3.5 | 4.1 | 3.9 | 2.8 | 3.1 | 0.61 | 0.56 | 0.72 | |||||
Segment III | JL-6 | NTS | 3.9 | 2.4 | 4.5 | 2.1 | 19.3 | 566.6 | 0.80 | 1.47 | 5.58 | 236.1 | 45.4 | 14.1 |
JL-13 | NTS | 15.2 | 6.4 | 11.8 | 6.4 | 76.0 | 819.4 | 1.00 | 2.63 | 9.01 | 128.0 | 22.5 | 12.2 | |
JL-18 | DS | 44.0 | 26.8 | 32.2 | 11.2 | 255.2 | 360.5 | 0.81 | 0.91 | 3.73 | 13.4 | 5.4 | 22.5 | |
JL-23 | NTS | 85.1 | 37.2 | 50.8 | 15.3 | 82.2 | 271.2 | 2.07 | 0.45 | 3.32 | 7.3 | 1.9 | 76.3 | |
JL-27 | MS | 33.6 | 25.2 | 18.4 | 15.6 | 602.1 | 631.3 | 2.17 | 6.11 | 16.61 | 25.0 | 13.3 | 34.4 | |
JL-38 | DS | 37.4 | 25.4 | 19.3 | 16.3 | 623.6 | 664.4 | 0.69 | 0.80 | 3.20 | 26.2 | 13.1 | 10.4 | |
JL-50 | NTS | 45.6 | 26.1 | 28.0 | 15.4 | 552.4 | 780.0 | 2.34 | 0.76 | 4.25 | 29.9 | 11.6 | 30.0 | |
JL-55 | NTS | 6.5 | 3.8 | 5.4 | 1.9 | 36.1 | 35.8 | 2.42 | 2.03 | 9.45 | 9.4 | 4.1 | 676.0 | |
JL-60 | NTS | 10.3 | 11.5 | 13.0 | 4.6 | 134.8 | 104.6 | 1.13 | 2.28 | 9.22 | 9.1 | 6.1 | 108.0 | |
JL-66 | DS | 4.7 | 4.3 | 5.0 | 1.7 | 34.3 | 37.3 | 0.67 | 0.44 | 2.22 | 8.7 | 4.6 | 179.6 | |
JLL-1 | DS | 24.7 | 21.5 | 25.1 | 8.9 | 247.1 | 202.9 | 0.17 | 0.44 | 1.34 | 9.4 | 5.6 | 8.4 | |
JLL-2 | DS | 25.5 | 21.9 | 25.5 | 9.0 | 249.3 | 203.7 | 0.35 | 0.57 | 1.75 | 9.3 | 5.5 | 17.2 | |
JLL-3 | WDS | 3.0 | 1.3 | 1.8 | 0.5 | 21.0 | 26.4 | 0.02 | 0.19 | 0.23 | 20.3 | 7.2 | 9.1 | |
Segment I | JC-60 | DS | 6.9 | 7.7 | 6.7 | 2.9 | 52.9 | 71.2 | 0.14 | 0.37 | 0.85 | 9.2 | 5.1 | 19.7 |
JC-61 | DS | 30.8 | 40.1 | 32.4 | 13.5 | 119.0 | 268.0 | 0.40 | 0.96 | 2.57 | 6.7 | 3.3 | 14.9 | |
JC-62 | DS | 18.6 | 24.9 | 21.0 | 9.4 | 362.0 | 183.0 | 0.58 | 0.60 | 1.74 | 7.4 | 7.4 | 31.7 | |
JC-64 | DS | 9.8 | 11.5 | 9.6 | 4.1 | 241.0 | 70.0 | 0.46 | 0.37 | 1.25 | 6.1 | 8.9 | 65.7 | |
JC-65 | DS | 6.6 | 6.9 | 6.3 | 3.7 | 266.0 | 91.1 | 0.18 | 0.46 | 1.53 | 13.2 | 15.2 | 19.8 | |
JC-66 | DS | 6.9 | 7.8 | 6.7 | 3.0 | 157.7 | 94.5 | 0.39 | 0.52 | 1.74 | 12.1 | 10.3 | 41.3 | |
JC-67 | DS | 4.3 | 4.6 | 4.2 | 2.5 | 400.0 | 72.3 | 0.29 | 0.41 | 1.42 | 15.7 | 30.3 | 40.1 | |
JC-68 | DS | 3.0 | 3.3 | 2.8 | 1.1 | 53.0 | 39.8 | 0.16 | 0.40 | 1.28 | 12.1 | 9.1 | 40.2 | |
JC-69 | DS | 2.9 | 2.8 | 2.8 | 1.8 | 57.2 | 44.6 | 0.05 | 0.37 | 1.14 | 15.9 | 9.9 | 11.2 | |
Segment II-E | J2-11 | Cu-rich | 12.7 | 16.4 | 16.7 | 28.8 | 8416.0 | 36.1 | 7.54 | 1.38 | 14.60 | 2.2 | 113.3 | 2088.6 |
J2-16 | MS | 83.9 | 42.6 | 129.3 | 34.3 | 63.8 | 53.5 | 2.93 | 7.16 | 31.23 | 1.3 | 0.4 | 547.7 | |
J2-17 | MS | 33.4 | 16.0 | 41.2 | 12.1 | 11.1 | 26.3 | 0.71 | 2.52 | 15.35 | 1.6 | 0.4 | 270.0 | |
J2-18 | NTS | 3.4 | 2.3 | 4.5 | 3.9 | 17.2 | 34.9 | 0.92 | 2.28 | 10.58 | 15.2 | 3.7 | 263.6 | |
J2-20 | NTS | 18.3 | 8.7 | 23.0 | 7.5 | 102.7 | 142.3 | 0.35 | 2.68 | 12.82 | 16.4 | 4.3 | 24.6 | |
J2-21 | NTS | 4.3 | 2.2 | 4.7 | 2.3 | 11.4 | 59.7 | 0.68 | 1.52 | 8.71 | 27.1 | 5.3 | 113.9 | |
J2-22 | NTS | 21.2 | 10.2 | 30.0 | 9.4 | 191.1 | 39.3 | 1.62 | 1.47 | 8.83 | 3.8 | 3.3 | 412.2 | |
J2-25 | NTS | 5.9 | 4.1 | 9.7 | 5.3 | 3.9 | 59.7 | 1.01 | 2.04 | 10.02 | 14.6 | 2.5 | 169.2 | |
J2-26 | NTS | 3.2 | 1.8 | 3.3 | 1.6 | 30.4 | 9.3 | 0.25 | 0.91 | 3.20 | 5.2 | 4.0 | 268.8 | |
J2-28 | NTS | 3.9 | 2.9 | 4.0 | 3.3 | 32.8 | 16.7 | 0.46 | 0.96 | 3.59 | 5.8 | 3.5 | 275.4 | |
J2-29 | DS | 2.3 | 2.0 | 3.4 | 2.5 | 9.2 | 25.3 | 0.72 | 0.61 | 2.67 | 12.6 | 3.4 | 284.6 | |
J2-30 | DS | 1.9 | 1.2 | 2.8 | 1.1 | 20.7 | 27.0 | 0.24 | 0.55 | 2.32 | 22.5 | 6.8 | 88.9 | |
J2-31 | DS | 2.2 | 1.3 | 3.0 | 1.8 | 256.2 | 27.6 | 0.07 | 0.64 | 2.43 | 21.2 | 34.2 | 25.4 | |
J2-32 | DS | 4.9 | 4.3 | 6.3 | 2.8 | 25.3 | 33.6 | 0.52 | 0.50 | 2.26 | 7.8 | 3.2 | 154.8 | |
J2-33 | DS | 9.8 | 7.5 | 11.6 | 3.4 | 124.4 | 61.7 | 0.20 | 0.58 | 2.21 | 8.2 | 5.8 | 32.4 | |
J2-34 | DS | 1.0 | 0.7 | 1.7 | 1.0 | 14.0 | 12.3 | 0.05 | 0.22 | 0.65 | 17.6 | 6.0 | 40.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Li, L.; Liu, Z.; Zeng, R.; Dick, J.M.; Yue, B.; Ai, Q. Multiple Magma Conduits Model of the Jinchuan Ni-Cu-(PGE) Deposit, Northwestern China: Constraints from the Geochemistry of Platinum-Group Elements. Minerals 2019, 9, 187. https://doi.org/10.3390/min9030187
Mao X, Li L, Liu Z, Zeng R, Dick JM, Yue B, Ai Q. Multiple Magma Conduits Model of the Jinchuan Ni-Cu-(PGE) Deposit, Northwestern China: Constraints from the Geochemistry of Platinum-Group Elements. Minerals. 2019; 9(3):187. https://doi.org/10.3390/min9030187
Chicago/Turabian StyleMao, Xiancheng, Longjiao Li, Zhankun Liu, Renyu Zeng, Jeffrey M. Dick, Bin Yue, and Qixing Ai. 2019. "Multiple Magma Conduits Model of the Jinchuan Ni-Cu-(PGE) Deposit, Northwestern China: Constraints from the Geochemistry of Platinum-Group Elements" Minerals 9, no. 3: 187. https://doi.org/10.3390/min9030187
APA StyleMao, X., Li, L., Liu, Z., Zeng, R., Dick, J. M., Yue, B., & Ai, Q. (2019). Multiple Magma Conduits Model of the Jinchuan Ni-Cu-(PGE) Deposit, Northwestern China: Constraints from the Geochemistry of Platinum-Group Elements. Minerals, 9(3), 187. https://doi.org/10.3390/min9030187