Tsikourasite, Mo3Ni2P1+x (x < 0.25), a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece
Abstract
:1. Introduction
2. Geological Background and Occurrence of Tsikourasite
3. Analytical Methods
4. Physical and Optical Properties
5. Chemical Composition and X-ray Crystallography
6. Relation to Other Species
7. Discussion
8. Genetic Models for the Precipitation of Tsikourasite
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Britvin, S.N.; Rudashevskii, N.S.; Krivovichev, S.V.; Burns, P.C.; Polekhovsky, Y.S. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. Am. Mineral. 2002, 87, 1245–1249. [Google Scholar] [CrossRef]
- Zolensky, M.; Gounelle, M.; Mikouchi, T.; Ohsumi, K.; Le, L.; Hagiya, K.; Tachikawa, O. Andreyivanovite: A second new phosphide from the Kaidun meteorite. Am. Mineral. 2008, 93, 1295–1299. [Google Scholar] [CrossRef]
- Buseck, P.R. Phosphide from meteorites: Barringerite, a new iron-nickel mineral. Science 1969, 165, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.V.; Zolensky, M.E.; Saito, A.; Ohsumi, K.; Yang, S.V.; Kononkova, N.N.; Mikouchi, T. Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. Am. Mineral. 2000, 85, 1082–1086. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Negevite, IMA 2013-104, Halamishite, IMA 2013-105, Transjordanite, IMA 2013-106, Zuktamrurite, IMA 2013-107. CNMNC Newsletter No. 19, February 2014. Mineral. Mag. 2014, 78, 165–170. [Google Scholar]
- Pratesi, G.; Bindi, L.; Moggi-Cecchi, V. Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. Am. Mineral. 2006, 91, 451–454. [Google Scholar] [CrossRef]
- Ma, C.; Beckett, J.R.; Rossman, G.R. Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. Am. Mineral. 2014, 99, 198–205. [Google Scholar] [CrossRef]
- Britvin, S.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Murashkoite, IMA 2012-071. CNMNC Newsletter No. 15, February 2013. Mineral. Mag. 2013, 77, 1–12. [Google Scholar]
- Britvin, S.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Krzhizhanovskaya, M.G.; Gorelova, L.A.; Vereshchagin, O.S.; Shilovskikh, V.V.; Zaitsev, A.N. Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, South Levant. Mineral. Petrol. 2019, 113, 237–248. [Google Scholar] [CrossRef]
- Britvin, S.N.; Kolomensky, V.D.; Boldyreva, M.M.; Bogdanova, A.N.; Krester, Y.L.; Boldyreva, O.N.; Rudashevsky, N.S. Nickelphosphide (Ni,Fe)3P-The nickel analogue of schreibersite. Zap. Vseross. Mineral. Obsh. 1999, 128, 64–72. [Google Scholar]
- Britvin, S.N.; Murashko, M.N.; Vereshchagin, O.S.; Vapnik, Y.; Shilovskikh, V.V.; Vlasenko, N.S. Polekhovskyite, IMA 2018-147. CNMNC Newsletter No. 48, April 2019. Mineral. Mag. 2019, 83. in press. [Google Scholar]
- Skala, R.; Cisarova, I. Crystal structure of meteoritic schreibersites: Determination of absolute structure. Phys. Chem. Miner. 2005, 31, 721–732. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V.; Vereshchagin, O.S.; Vlasenko, N.S.; Shilovskikh, V.V.; Zaitsev, A.N. Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys. Chem. Mineral. 2019, 46, 361–369. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G.; Kazakov, I. Platinum-Group Minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals, Russia. Minerals 2016, 6, 108. [Google Scholar] [CrossRef]
- Sideridis, A.; Zaccarini, F.; Grammatikopoulos, T.; Tsitsanis, P.; Tsikouras, B.; Pushkarev, E.; Garuti, G.; Hatzipanagiotou, K. First occurrences of Ni-phosphides in chromitites from the ophiolite complexes of Alapaevsk, Russia and GerakiniOrmylia, Greece. Ofioliti 2018, 43, 75–84. [Google Scholar]
- Ifandi, E.; Zaccarini, F.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Karipi, S.; Hatzipanagiotou, K. First occurrences of Ni-V-Co phosphides in chromitite of Agios Stefanos mine, Othrys ophiolite, Greece. Ofioliti 2018, 43, 131–145. [Google Scholar]
- Zaccarini, F.; Ifandi, E.; Tsikouras, B.; Grammatikopoulos, T.; Garuti, G.; Mauro, D.; Bindi, L.; Stanley, C. Occurrences of of new phosphides and sulfide of Ni, Co, V, and Mo from chromitite of the Othrys ophiolite complex (Central Greece). Per. Ital. Mineral. 2019, in press. [Google Scholar]
- Oryshchyn, S.V.; Le Sénéchal, C.; Députier, S.; Bauer, J.; Guerin, R.; Akselrud, L.G. New Ternary Phases in the Mo–Ni–P System: Synthesis and Crystal Structures. J. Solid State Chem. 2001, 160, 156–166. [Google Scholar] [CrossRef]
- Rassios, A.; Smith, A.G. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites. In Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program; Dilek, Y., Moores, E., Elthon, D., Nicolas, A., Eds.; Geological Society of America: Boulder, CO, USA, 2000; pp. 473–484. [Google Scholar]
- Economou, M.; Dimou, E.; Economou, G.; Migiros, G.; Vacondios, I.; Grivas, E.; Rassios, A.; Dabitzias, S. Chromite deposits of Greece. In Chromites, UNESCO’s IGCP197 Project Metallogeny of Ophiolites; Petrascheck, W., Karamata, S., Kravchenko, G.G., Johan, Z., Economou, M., Engin, T., Eds.; Theophrastus Publications S.A.: Athens, Greece, 1986; pp. 129–159. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Economou-Eliopoulos, M. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolite upper mantle of the Balkan Peninsula. Mineral. Deposita 1999, 34, 312–319. [Google Scholar] [CrossRef]
- Tsikouras, B.; Ifandi, E.; Karipi, S.; Grammatikopoulos, T.A.; Hatzipanagiotou, K. Investigation of Platinum-Group Minerals (PGM) from Othrys chromitites (Greece) using superpanning concentrates. Minerals 2016, 6, 94. [Google Scholar] [CrossRef]
- Bortolotti, V.; Chiari, M.; Marcucci, M.; Photiades, A.; Principi, G.; Saccani, E. New geochemical and age data on the ophiolites from the Othrys area (Greece): Implication for the Triassic evolution of the Vardar ocean. Ofioliti 2008, 33, 135–151. [Google Scholar]
- Oxford Diffraction Ltd. CrysAlis RED; Oxford Diffraction Ltd.: Abingdon, UK, 2006. [Google Scholar]
- Oxford Diffraction Ltd. ABSPACK. In CrysAlis RED; Oxford Diffraction Ltd.: Abingdon, UK, 2006. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.C. International Tables for Crystallography: Mathematical, Physical, and Chemical Tables; International Union of Crystallography: Chester, UK, 1992; Volume 3. [Google Scholar]
- Mueller, M.H.; Knott, H.W. The crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O. Trans. Met. Soc. AIME 1963, 227, 674–678. [Google Scholar]
- Smith, D.G.W.; Nickel, E.H. A system for codification for unnamed minerals: Report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Can. Mineral. 2007, 45, 983–1055. [Google Scholar] [CrossRef]
- Guérin, R.; Sergent, M. Nouveaux phosphures ternaires: NiMoP2, NiWP2, CoMoP2 et CoWP2. J. Solid State Chem. 1976, 18, 317–323. [Google Scholar] [CrossRef]
- Rudashevsky, N.S.; Garuti, G.; Andersen, J.C.Ø.; Kretser, Y.L.; Rudashevsky, V.N.; Zaccarini, F. Separation of accessory minerals from rocks and ores by hydroseparation (HS) technology: Method and application to CHR-2 chromitite, Niquelândia intrusion, Brazil. Trans. Inst. Mining Metall. 2002, 111, B87–B94. [Google Scholar] [CrossRef]
- Kapsiotis, A.; Grammatikopoulos, T.A.; Tsikouras, B.; Hatzipanagiotou, K. Platinum-group mineral characterization in concentrates from high-grade PGE Al-rich chromitites of Korydallos area in the Pindos ophiolite complex (NW Greece). Resource Geol. 2010, 60, 178–191. [Google Scholar] [CrossRef]
- Grammatikopoulos, T.A.; Kapsiotis, A.; Tsikouras, B.; Hatzipanagiotou, K.; Zaccarini, F.; Garuti, G. Spinel composition, PGE geochemistry and mineralogy of the chromitites from the Vourinos ophiolite complex, northwestern Greece. Can. Mineral. 2011, 49, 1571–1598. [Google Scholar] [CrossRef]
- Malvoisin, B.; Chopin, C.; Brunet, F.; Matthieu, E.; Galvez, M.E. Low-temperature Wollastonite formed by carbonate reduction: A marker of serpentinite redox conditions. J. Petrol. 2012, 53, 159–176. [Google Scholar] [CrossRef]
- Etiope, G.; Ifandi, E.; Nazzari, M.; Procesi, M.; Tsikouras, B.; Ventura, G.; Steele, A.; Tardini, R.; Szatmari, P. Widespread abiotic methane in chromitites. Sci. Rep. 2018, 8, 8728. [Google Scholar] [CrossRef]
- Xiong, Q.; Griffin, W.L.; Huang, J.X.; Gain, S.E.M.; Toledo, V.; Pearson, N.J.; O’Reilly, S.Y. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from Mount Carmel. Eur. J. Mineral. 2017, 29, 557–570. [Google Scholar] [CrossRef]
- Pasek, M.A.; Hammeijer, J.P.; Buick, R.; Gull, M.; Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natural Acad. Sci. U.S.A. 2013, 110, 100089–100094. [Google Scholar] [CrossRef] [PubMed]
- Ballhaus, C.; Wirth, R.; Fonseca, R.O.C.; Blanchard, H.; Pröll, W.; Bragagni, A.; Nagel, T.; Schreiber, A.; Dittrich, S.; Thome, V.; et al. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem. Perspec. Lett. 2017, 5, 42–46. [Google Scholar] [CrossRef]
Sample | P | S | V | Fe | Co | Ni | Mo | Total |
---|---|---|---|---|---|---|---|---|
ot2gr17an4 | 7.59 | 0.64 | 14.19 | 1.14 | 7.47 | 23.78 | 43.56 | 98.37 |
ot2gr17an3 | 7.96 | 0.67 | 14.18 | 1.18 | 7.72 | 23.77 | 44.04 | 99.52 |
ot2gr17an5 | 8.03 | 0.65 | 14.16 | 1.18 | 7.53 | 24.16 | 44.16 | 99.87 |
ot2gr17an2 | 8.05 | 0.71 | 13.98 | 1.19 | 7.56 | 23.86 | 44.39 | 99.74 |
ot2gr17an1 | 8.20 | 0.66 | 14.13 | 1.20 | 7.67 | 23.91 | 44.65 | 100.42 |
average | 7.97 | 0.67 | 14.13 | 1.18 | 7.59 | 23.90 | 44.16 | 99.60 |
λ (nm) | R | λ (nm) | R |
---|---|---|---|
400 | 54.6 | 560 | 57.0 |
420 | 54.9 | 589 | 57.5 |
440 | 55.2 | 580 | 57.3 |
460 | 55.5 | 600 | 57.6 |
470 | 55.7 | 620 | 58.0 |
480 | 55.8 | 640 | 58.3 |
500 | 56.1 | 650 | 58.5 |
520 | 56.4 | 660 | 58.6 |
546 | 56.8 | 680 | 58.9 |
540 | 56.7 | 700 | 59.2 |
Atom | Wyckoff | x/a | y/b | z/c | Uiso |
---|---|---|---|---|---|
Mo1 | 24f | 0.1941(2) | 0 | 0 | 0.0162(8) |
Mo2 | 24g | 0.4437(2) | ¼ | ¼ | 0.0169(8) |
Ni1 | 16e | 0.8319(2) | 0.8319(2) | 0.8319(2) | 0.0189(7) |
Ni2 | 16e | 0.4186(2) | 0.4186(2) | 0.4186(2) | 0.0151(7) |
P1 | 16e | 0.6231(9) | 0.6231(9) | 0.6231(9) | 0.0288(6) |
P2 | 4a | 0 | 0 | 0 | 0.056(17) |
Mo1–P2 | 2.100(2) | Ni2–P1 (×3) | 2.303(11) |
---|---|---|---|
Mo1–Ni1 (×2) | 2.588(2) | Ni2–Ni2 (×3) | 2.492(5) |
Mo1–Ni2 (×2) | 2.730(2) | Ni2–Mo2 (×3) | 2.594(2) |
Mo1–P1 (×2) | 2.732(2) | Ni2–Mo1 (×3) | 2.730(2) |
Mo1–Mo2 (×4) | 2.8384(2) | P1–Ni2 (×3) | 2.303(11) |
Mo1–Mo1 | 2.970(3) | P1–Ni1 (×3) | 2.362(11) |
Mo2–Ni2 (×2) | 2.594(2) | P1–Mo1 (×3) | 2.732(2) |
Mo2–Ni1 (×2) | 2.733(2) | P1–Mo2 (×3) | 2.746(3) |
Mo2–P1 (×2) | 2.746(3) | P2–Mo1 (×6) | 2.100(2) |
Mo2–Mo1 (×4) | 2.8384(2) | ||
Mo2–Mo2 (×2) | 2.964(3) | ||
Ni1–P1 (×3) | 2.362(11) | ||
Ni1–Ni1 (×3) | 2.507(5) | ||
Ni1–Mo1 (×3) | 2.588(2) | ||
Ni1–Mo2 (×3) | 2.733(2) |
h | k | l | dcalc | Icalc |
---|---|---|---|---|
2 | 2 | 2 | 3.1239 | 5 |
4 | 0 | 0 | 2.7054 | 13 |
3 | 3 | 1 | 2.4826 | 12 |
4 | 2 | 2 | 2.2089 | 42 |
5 | 1 | 1 | 2.0826 | 65 |
3 | 3 | 3 | 2.0826 | 35 |
4 | 4 | 0 | 1.9130 | 21 |
4 | 4 | 2 | 1.8036 | 8 |
5 | 5 | 1 | 1.5153 | 5 |
7 | 3 | 1 | 1.4088 | 5 |
7 | 3 | 3 | 1.3221 | 6 |
6 | 6 | 0 | 1.2753 | 14 |
8 | 2 | 2 | 1.2753 | 17 |
5 | 5 | 5 | 1.2496 | 7 |
9 | 3 | 3 | 1.0876 | 8 |
8 | 8 | 4 | 0.9018 | 5 |
11 | 5 | 1 | 0.8925 | 8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccarini, F.; Bindi, L.; Ifandi, E.; Grammatikopoulos, T.; Stanley, C.; Garuti, G.; Mauro, D. Tsikourasite, Mo3Ni2P1+x (x < 0.25), a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece. Minerals 2019, 9, 248. https://doi.org/10.3390/min9040248
Zaccarini F, Bindi L, Ifandi E, Grammatikopoulos T, Stanley C, Garuti G, Mauro D. Tsikourasite, Mo3Ni2P1+x (x < 0.25), a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece. Minerals. 2019; 9(4):248. https://doi.org/10.3390/min9040248
Chicago/Turabian StyleZaccarini, Federica, Luca Bindi, Elena Ifandi, Tassos Grammatikopoulos, Chris Stanley, Giorgio Garuti, and Daniela Mauro. 2019. "Tsikourasite, Mo3Ni2P1+x (x < 0.25), a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece" Minerals 9, no. 4: 248. https://doi.org/10.3390/min9040248
APA StyleZaccarini, F., Bindi, L., Ifandi, E., Grammatikopoulos, T., Stanley, C., Garuti, G., & Mauro, D. (2019). Tsikourasite, Mo3Ni2P1+x (x < 0.25), a New Phosphide from the Chromitite of the Othrys Ophiolite, Greece. Minerals, 9(4), 248. https://doi.org/10.3390/min9040248