The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong
Abstract
:1. Introduction
- (1)
- Distribution and migration of Earth’s core, mantle and crust materials.
- (2)
- The formation and evolution of mantle plume.
- (3)
- The anti-gravity migration of metallogenic elements.
- (4)
- The concentration and positioning of metallogenic materials.
2. Regional Geological and Metallogenetic Setting
3. Ore-Controlling Factors and Enlightenment of Current Prospecting Works
3.1. The Spatial Distribution of Main Gold Ore Bodies
3.2. Rock-Controlling and Ore-Controlling Character of Fault Structures
3.3. The Constraint of the Backbone Faults on Ore Formation and Ore Controlling
3.4. Physicochemical Conditions of Metallogenesis
4. Mantle-Crust Evolution and the Structural Movement of Metallogenic Districts
4.1. Mantle Uplifting and the Formation of the Laiyang Sub-Mantle Plume
4.2. Pulse Upwelling of Magma and the Formation of Mantle Branches
4.3. The Spatial Pattern of the Mantle Branch
5. Multiple Evolutions of the Mantle Plume and the Metallogenesis of Mantle Branches
5.1. Heat Migration Ore-Conducting and Ore-Forming of Sub-Mantle Plumes
5.2. The Ore-Forming and Ore-Controlling of Mantle Branches
5.3. Mantle Branch Metallogenesis and Its Main Types of Mineralization
6. Conclusions
- (1)
- The multiple evolutions of mantle plume break the restriction of earth spheres (core, mantle, crust) structure, and provide an important channel for deep ore-forming material to migrate up. The study on the multiple evolutions of mantle plume elaborates the migration mechanism of heavy elements migrating from the core to shallow crust.
- (2)
- In the process of mantle plume multiple evolutions initiated from core-mantle boundary (D″ layer), heavy elements (such as gold and silver) which sank into the core by gravity differentiation migrate up in the form of a gas-liquid state. They are concentrated to form ore bodies in the favorable structural expanding zones in mantle branch and different fractures. Ultra-large gold deposits with huge reserves can be formed.
- (3)
- Metallogenic material came from deep earth and accumulated as ore-bodies in favorable structural expanding zones. Generally speaking, a favorable fault is not necessary to form deposits, but ore-bearing fault structure is linked to the deep earth. Favorable fault structures can be either migration channels for metallogenic material or hosting places for ore bodies.
- (4)
- Structure movement, magmatism and metallogenesis are critical factors in the mineralization of large metal deposits. The structure movement is the most important factor in igneous activity related to gold metallogenic events. In the Jiaodong area, the main faults play both roles of fluid migration channels and ore-hosting places, forming large to ultra-large gold deposits.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Yang, L.Q.; Li, R.H.; Groves, D.I.; Santosh, M.; Wang, Z.L.; Sai, S.X.; Wang, S.R. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China. Geol. J. 2019, 54, 378–391. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Bagas, L.; Carranza, E.; Lu, Y.J. Cretaceous–Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U–Pb, illite K–Ar, and apatite fission track thermochronometry. Miner. Depos. 2015, 50, 987–1006. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Li, S.R.; Santosh, M. Geodynamics of heterogeneous gold miner-alization in the North China Craton and its relationship to lithospheric destruction. Gondwana Res. 2017, 50, 267–292. [Google Scholar] [CrossRef]
- Mills, S.E.; Tomkins, A.G.; Weinberg, R.F.; Fan, H.R. Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China. Ore Geol. Rev. 2015, 71, 150–168. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 2016, 7, 409–418. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Goldfarb, R.J.; Yuan, W.M.; Weinberg, R.F.; Zhang, R.Z. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China. Ore Geol. Rev. 2016, 72, 165–178. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Guo, L.N.; Song, M.C.; Zheng, X.L. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Geosci. Sin. 2014, 30, 2447–2467, (In Chinese with English Abstract). [Google Scholar]
- Zhang, L.; Li, G.W.; Zheng, X.L.; An, P.; Chen, B.Y. 40Ar/39Ar and fission-track dating constraints on the tectonothermal history of the world-class Sanshandao gold deposit, Jiaodong Peninsula, eastern China. Acta Petrol. Sin. 2016, 32, 2465–2476, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Song, Y.X.; Cui, S.X.; Jiang, H.L.; Yuan, W.H.; Wang, H.J. Characteristic comparison between shallow and deep-seated gold ore bodies in Jiaojia superlarge gold deposit, northwestern Shandong peninsula. Miner. Depos. 2011, 30, 923–932, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Zhang, J.J.; Zhang, P.J.; Yang, L.Q.; Liu, D.H.; Ding, Z.J.; Song, Y.X. Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao, Shandong Peninsula, China. Acta Geolo. Sin. 2015, 89, 365–383, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C. The relevant issues of deep gold deposit exploration in China. Gold Sci. Technol. 2017, 25, 1–2. (In Chinese) [Google Scholar]
- Song, Y.X.; Song, M.C.; Ding, Z.J.; Wei, X.F.; Xu, S.H.; Li, J.; Tan, X.F.; Li, S.Y.; Zhang, Z.L.; Jiao, X.M.; et al. Important progress of deep ore prospecting and metallogenic characteristics in Jiaodong gold deposit concentration area. Gold Sci. Technol. 2017, 25, 4–18, (In Chinese with English Abstract). [Google Scholar]
- Song, G.Z.; Yan, C.M.; Cao, J.; Guo, Z.F.; Bao, Z.Y.; Liu, G.D.; Li, S.; Fan, J.M.; Liu, C.J. Breakthrough and significance of exploration at depth more than 1000 m in Jiaojia metallogenic belt, Jiaodong: A case of Shaling mining area. Gold Sci. Technol. 2017, 25, 19–27, (In Chinese with English Abstract). [Google Scholar]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Baker, T.; Dube, B.; Groves, D.I.; Hart, C.J.R.; Gosselin, P. Distribution, character, and genesis of gold deposits in metamorphic terranes. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 407–450. [Google Scholar]
- Goldfarb, R.J.; Hart, C.; Davis, G. East Asian gold: deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Econ. Geol. 2007, 102, 341–345. [Google Scholar] [CrossRef]
- Qiu, Y.M.; Groves, D.I.; Mcnaughton, N.J.; Wang, L.G.; Zhou, T.H. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Miner. Depos. 2002, 37, 283–305. [Google Scholar] [CrossRef]
- Mao, J.W.; Wang, Y.T.; Zhang, Z.H.; Yu, J.J.; Niu, B.G. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas. Sci. China (Ser. D Earth Sci.) 2003, 46, 838–851. [Google Scholar] [CrossRef]
- Zhou, T.H.; Lv, G.X. Tectonics, granitoids and Mesozoic gold deposits in East Shandong, China. Ore Geol. Rev. 2000, 16, 71–90. [Google Scholar] [CrossRef]
- Ding, Z.J.; Sun, F.Y.; Liu, F.L.; Liu, J.H.; Peng, Q.M.; Ji, P.; Li, B.L.; Zhang, P.J. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China. Acta Petrol. Sin. 2015, 31, 3045–3080, (In Chinese with English Abstract). [Google Scholar]
- Jiang, S.Y.; Dai, B.Z.; Jiang, Y.H.; Zhao, H.X.; Hou, M.L. Jiaodong and Xiaoqinling:two orogenic gold province formed in different tectonic settings. Acta Petrol. Sin. 2009, 25, 2727–2738, (In Chinese with English Abstract). [Google Scholar]
- Li, L.; Santosh, M.; Li, S.R. The “Jiaodong-type gold” deposits—Characteristics, origin and prospecting. Ore Geol. Rev. 2015, 65, 589–611. [Google Scholar] [CrossRef]
- Zhu, R.X.; Fan, H.R.; Li, J.W.; Meng, Q.R.; Li, S.R. Decratonic gold deposits. Chin. Sci. Geosci. 2015, 58, 1523–1537. [Google Scholar] [CrossRef]
- Zhai, M.G.; Fan, H.R.; Yang, J.H.; Miao, L.C. Large-scale cluster in east Shandong: Anorogenic metallogenesis. Earth Sci. Front. 2004, 11, 85–98, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Wang, Y.T.; Li, H.M.; Pirajno, F.; Zhang, C.Q.; Wang, R.T. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D–O–C–S isotope systematics. Ore Geol. Rev. 2008, 33, 361–381. [Google Scholar] [CrossRef]
- Sun, F.Y.; Shi, Z.L.; Feng, B.Z. Gold Deposit Geology and Differential Diagenesis and Mineralisation of Mantle-derived C–H–O Fluids in Jiaodong Peninsula; Jilin People’s Publishing House: Changchun, China, 1995; p. 170, (In Chinese with English Abstract). [Google Scholar]
- Mao, J.W.; Wang, Y.T.; Ding, T.P.; Chen, Y.C.; Wei, J.X.; Yin, J.Z. Dashuigou tellurium deposit in Sichuan Province, China—An example of mantle fluid evolving in mineralized process: Evidences from C, O, H, S isotopes. Resour. Geol. 2002, 52, 15–23. [Google Scholar] [CrossRef]
- Zhou, X.H.; Yang, J.H.; Zhang, L.C. Metallogenesis of super-large gold deposits in Jiaodong region and deep processes of subcontinental lithosphere beneath North China Craton in Mesozoic. Sci. China (Ser. D Earth Sci.) 2003, 46, 14–25. [Google Scholar]
- Liu, J.M.; Ye, J.; Xu, J.H.; Sun, J.G.; Shen, K. C–O and Sr–Nd isotopic geochemistry of carbonate minerals from gold deposits in East Shandong, China. Acta Petrol. Sin. 2003, 19, 775–784, (In Chinese with English Abstract). [Google Scholar]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralisation at the San shandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Wang, B.D.; Niu, S.Y.; Sun, A.Q.; Zhang, J.Z. Deep Sources of Ore-forming Materials and Mantle Branch Structure in Association with Metallogenesis; Geological Publishing House: Beijing, China, 2010; pp. 187–212. (In Chinese) [Google Scholar]
- Niu, S.Y.; Hu, H.B.; Sun, A.Q. Shandong Mantle Branch and Its Ore-Forming, Ore-Controlling, Ore-Prospecting; Geological Publishing House: Beijing, China, 2017; pp. 1–256. (In Chinese) [Google Scholar]
- Hua, R.M.; Mao, J.W. A preliminary discussion on the Mesozoic metallogenic explosion in east China. Miner. Depos. 1999, 18, 300–307, (In Chinese with English Abstract). [Google Scholar]
- Lv, G.X.; Guo, T.; Shu, B.; Shen, Y.K.; Liu, D.J.; Zhou, G.F.; Ding, Y.X.; Wu, J.C.; Zhao, K.G.; Sun, Z.F.; et al. Study on the multi-level controlling rule for thctonic system in Jiaodong gold-centralized area. Geotecton. Metallog. 2007, 2, 193–204, (In Chinese with English Abstract). [Google Scholar]
- Sun, A.Q.; Niu, S.Y.; Zhang, J.Z.; Chen, C.; Ma, B.J.; Wang, B.D.; Zhang, X.F.; Zhang, F.X.; Liu, C. Analysis on the ore-controlling of Guojialing mantle branch structure in northwest Shangdong. Gold Sci. Technol. 2012, 20, 1–7, (In Chinese with English Abstract). [Google Scholar]
- Leech, M.L.; Webb, L.E. Is the HP–UHP Hong’an–Dabie–Sulu orogen a piercing point for offset on the Tan–Lu fault? J. Asian Earth Sci. 2013, 63, 112–129. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Sun, Z.S.; Wang, J.P.; Wang, Q.F.; Xin, H.B.; Li, X.J. Ametallogenic model of gold deposits of the Jiaodong granite–green-stone belt. Acta Geol. Sin. 2003, 77, 537–546. [Google Scholar]
- Deng, J.; Yang, L.Q.; Ge, L.S.; Wang, Q.F.; Zhang, J.; Gao, B.F.; Zhou, Y.H.; Jiang, S.Q. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Prog. Nat. Sci. 2006, 16, 777–784. [Google Scholar]
- Ling, Y.Y.; Zhang, J.J.; Liu, K.; Ge, M.H.; Wang, M.; Wang, J.M. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan–Lu Fault region, northeast China. J. Asian Earth Sci. 2017, 144, 303–322. [Google Scholar] [CrossRef]
- Yan, G.H.; Cai, J.H.; Ren, K.X.; Mu, B.L.; Li, F.T.; Chu, Z.Y. Nd, Sr and Pb isotopic geochemistry of late-Mesozoic alkaline-rich intrusions from the Tan-lu Fault zone: Evidence of the magma source. Acta Petrol. Sin. 2008, 24, 1223–1236. [Google Scholar]
- Zhu, G.; Liu, C.; Gu, C.C.; Zhang, S.; Li, Y.J.; Su, N.; Xiao, S.Y. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone. Sci. China (Earth Sci.) 2018, 6, 386–405. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ding, Z.J.; Liu, D.H.; Zhang, P.J.; Zou, J.; Ma, B.; Luan, G.D. Exploration practice and prospecting results of super-large gold mine of Sanshandao norther sea area in Laizhou city, Shandong province. Gold Sci. Technol. 2016, 24, 1–10, (In Chinese with English Abstract). [Google Scholar]
- Niu, S.Y.; Sun, A.Q.; Zhang, J.Z.; Ma, B.J.; Wang, B.D.; Chen, C.; Zhang, F.X.; Liu, C.; Zhang, X.F. Discussion on the deep ore-controlling structure in gold deposit concentrated area of Northwestern Jiaodong. Acta Geol. Sin. 2011, 85, 1094–1107, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Song, Y.X.; Ding, Z.J.; Wei, X.F.; Sun, Z.L.; Song, G.Z.; Zhang, J.J.; Zhang, P.J.; Wang, Y.G. The discovery of the Jiaojia and the Sanshandao giant gold geposits in Jiaodong peninsula and Discussion on relevant issues. Geotecton. Metallog. 2019, 43, 92–110, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C. The main achievements and key theory and methods of deep-seated prospecting in the Jiaodong gold concentration, Shandong province. Geol. Bull. China 2015, 34, 1758–1771, (In Chinese with English Abstract). [Google Scholar]
- Liu, L.L. Characteristics of Ore-Controlling Structures and Distribution of Mineralization Intensity in the Sanshandao Gold Deposit, Jiaodong peninsula, China. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Liu, X.P.; Feng, T.; Deng, Q.H.; Lei, Y.X.; Wang, X. Geological characteristics and prospecting direction of Xiling gold deposit in northwest Jiaodong. Gold 2017, 38, 15–18, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.O.; Cawood, P.A.; Wilde, S.A.; Liu, R.Q.; Song, H.L.; Li, W.; Snee, L.W. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Miner. Depos. 2003, 38, 141–153. [Google Scholar] [CrossRef]
- Li, J.W. Mesozoic large scale mineralization in Jiaodong gold deposits: Chronology and geodynamics setting. In Proceedings of the Petrology and Geodynamics Seminar of China, Haikou, China, 19–24 November 2004; pp. 97–100, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.G.; Qiu, Y.M.; McNaughton, N.J.; Groves, D.I.; Luo, Z.K.; Huang, J.Z.; Miao, L.C.; Liu, Y.K. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U–Pb zircon studies of granitoids. Ore Geol. Rev. 1998, 13, 275–291. [Google Scholar] [CrossRef]
- Li, R.H. Ore-controlling model of the Jiaojia gold belt, Shandong province. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Yang, J.H.; Zhou, X.H.; Chen, L.H. Dating of gold mineralization for super-large tectonite-type gold deposits in northwestern Jiaodong peninsula and its implications for gold metallogeny. Acta Petrol. Sin. 2000, 16, 454–458, (In Chinese with English Abstract). [Google Scholar]
- Zhang, A.N. Study on ore-controlling regularity of Hexi fault and metallogenic regularities of gold deposits in Jiaodong. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Hou, L.M.; Jiang, S.Y.; Jiang, Y.H.; Ling, H.F. S-Pb Isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shandong province. Acta Petrol. Sin. 2006, 22, 2525–2533, (In Chinese with English Abstract). [Google Scholar]
- Song, M.C.; Cui, S.X.; Yi, P.H.; Xu, J.X.; Yuan, W.H.; Jiang, H.L. Prospecting and Metallogenetic Model of Deep Large-Superlarge Gold Deposit in the Gold Concentration Area of Northwest Jiaodong; Geological Publishing House: Beijing, China, 2010; pp. 1–339. (In Chinese) [Google Scholar]
- Li, S.X.; Liu, C.C.; An, Y.H.; Wang, W.C.; Huang, T.L.; Yang, C.H. Jiaodong Gold Deposit Geology; Geological Publishing House: Beijing, China, 2007; pp. 1–423. (In Chinese) [Google Scholar]
- Sha, D.M.; Yuan, L.H. Thecharacteristics, distribution and prospect of epithermal gold deposits. Geol. Resour. 2003, 12, 115–124, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z.F.; Zhao, L.S.; Zhou, Q.M.; Xu, J.K. Physicochemical constrains on mineralization of epithermal gold deposits in Muping-Rushan mineralization zone, eastern Shandong Province, China. Acta Mineral. Sin. 1994, 14, 270–278, (In Chinese with English Abstract). [Google Scholar]
- Ye, T.Z.; Xue, J.L. Geological research in the deep ore prospecting of metal deposit. Geol. China. 2007, 34, 855–869. [Google Scholar]
- Teng, J.W. Material-energy exchange within the Earth and resources and disasters. Earth Sci. Front. 2001, 8, 1–8. [Google Scholar]
- Niu, S.Y.; Sun, A.Q.; Liu, X.H.; Zhang, J.Z.; Zhang, F.X.; Chen, C.; Ma, B.J.; Hou, J.L. Structural characteristics and ore-controlling of Beibo gold deposit in Jiaodong. Gold Sci. Technol. 2016, 24, 1–7, (In Chinese with English Abstract). [Google Scholar]
- Wilson, J.T. A possible origin of the Hawaiian Islands. Can. J. Phys. 1963, 41, 863–866. [Google Scholar] [CrossRef]
- Morgan, W.J. Deep mantle convection plumes and plate motions. Bull. Am. Assoc. Petrol. Geol. 1972, 56, 203–213. [Google Scholar]
- Zhang, Z.C.; Wang, F.S.; Hao, Y.L. Picrites from the Emeishan Large Igneous Province: Evidence for the Mantle Plume Activity. Acta Metall. Sin. 2005, 24, 17–22. [Google Scholar]
- Niu, Y.L. On the great plume debate. Chin. Sci. Bull. 2005, 50, 1537–1540. [Google Scholar] [CrossRef]
- Davies, G.F. Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett. 1990, 99, 94–109. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Lu, J.R.; Lin, S.Z. The Axial Zone Consisting of Pyrolite and Eclogite in the Emei Mantle Plume: Major, Trace Element and Sr-Nd-Pb Isotope Evidence. Acta Geol. Sin. 2005, 79, 200–219, (In Chinese with English Abstract). [Google Scholar]
- Boss, A.P.; Sack, I.S. Formation and growth of deep mantle plume. Geophys. J. R. Astron. Soc. 1985, 80, 241–255. [Google Scholar] [CrossRef]
- Anderson, D.L. The thermal state of the upper mantle; no role for mantle plumes. Geophys. Res. Lett. 2000, 27, 3623–3626. [Google Scholar] [CrossRef]
- French, S.W.; Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 2015, 525, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Gerya, T.V.; Stern, R.J.; Baes, M.; Sobolev, S.V.; Whattam, S.A. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 2015, 527, 221–225. [Google Scholar] [CrossRef]
- Caruso, S.; Fiorentini, M.L.; Hollis, S.P.; Laflamme, C.; Baumgartner, R.J.; Steadman, J.A.; Savard, D. The fluid evolution of the Nimbus Ag-Zn-(Au) deposit: An interplay between mantle plume and microbial activity. Precambrian Res. 2018, 317, 211–229. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Borisenko, A.S.; Izokn, A.E.; Zhmodik, S.M. A thermochemical model of Eurasian Permo-Triassic mantle plumes as a basis for prediction and exploration for Cu-Ni-PGE and rare-metal ore deposits. Russ. Geol. Geophys. 2010, 51, 903–924. [Google Scholar] [CrossRef]
- Kuzmin, M.I.; Yarmolyuk, V.V. Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russ. Geol. Geophys. 2015, 55, 120–143. [Google Scholar] [CrossRef]
- Berzina, A.P.; Berzina, A.N.; Gimon, V.O. The Sora porphyry Cu-Mo deposit (Kuznetsk Alatau): Magmatism and effect of mantle plume on the development of ore-magmatic system. Russ. Geol. Geophys. 2011, 52, 1553–1562. [Google Scholar] [CrossRef]
- Wang, D.H. Basic concept, classification, evolution of mantle plume and large scale mineralization- probe into Southwestern China. Earth Sci. Front. (China Univ. Geosci. Beijing) 2001, 8, 67–72, (In Chinese with English Abstract). [Google Scholar]
- Xu, YG.; Wang, Y.; Wei, X.; He, B. Mantle plumerelated mineralization and their principal controlling factors. Acta Petrol. Sin. 2013, 29, 3307–3322, (In Chinese with English Abstract). [Google Scholar]
- Niu, S.Y.; Cheng, G.S.; Zhang, J.Z.; Sun, A.Q.; Ma, B.J.; Zhang, F.X.; Wang, B.D.; Xu, M.; Wu, J.C.; Zhao, R.X.; et al. Study on the Metallogenetism of Sub-mantle Plume and Mantle Branches in the Gold Mineralization Concentration Area of Northwest Jiaodong Peninsula. Acta Geol. Sin. (Engl. Ed.) 2014, 88, 1409–1420. [Google Scholar] [CrossRef]
- Niu, S.Y.; Hou, Q.L.; Hou, Z.Q.; Sun, A.Q.; Wang, B.D.; Li, H.Y.; Xu, C.S. Cascaded Evolution of Mantle Plumes and Metallogenesis of Core- and Mantle-derived Elements. Acta Geol. Sin. (Engl. Ed.) 2003, 77, 522–536. [Google Scholar]
- Niu, S.Y.; Guo, L.J.; Liu, J.M.; Shao, J.A.; Wang, B.D.; Hu, H.B.; Sun, A.Q.; Wang, S. Tectonic ore-controlling in the middle-southern segment of Da Hinggan Ling, Northeast China. Chin. J. Geochem. 2006, 25, 62–70. [Google Scholar]
- Wang, B.D.; Niu, S.Y.; Sun, A.Q.; Zhang, J.Z.; Wang, X.; Wang, C.E. Isotope tracers for deep-seated fluids and noble gases. Chin. J. Geochem. 2013, 32, 195–202. [Google Scholar] [CrossRef]
- Wang, B.D.; Niu, S.Y.; Sun, A.Q.; Li, H.Y. The isotopic composition of noble gases in gold deposits and the source of ore-forming materials in the region of North Hebei, China. Chin. J. Geochem. 2003, 22, 313–319. [Google Scholar]
- Chen, C.; Niu, S.Y.; Wang, Z.L.; Guo, Z.; Sun, A.Q.; Wang, B.D.; Gao, Y.C. Comparison between the Xishimen gold deposit the Shihu gold deposit in western Hebei analysis of the potential for ore exploration. Chin. J. Geochem. 2011, 30, 281–289. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, G.S.; Niu, M.L.; Song, C.Z.; Wang, D.X. Transcurrent movement and genesis of the Tan-Lu fault zone. Geol. Bull. China 2003, 22, 200–207. [Google Scholar]
- Ye, J.L.; Huang, D.H.; Zhang, J.X. Introduction to Geology; Geological Publishing House: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Niu, S.Y.; Sun, A.Q.; Shao, A.G.; Wang, B.D.; Zhao, M.H.; Wang, L.F.; Jiang, W.; Xu, C.S. The Multiple Evolution of Mantle Plume and Its Mineralization; Seismological Press: Beijing, China, 2001; pp. 41–175. (In Chinese) [Google Scholar]
- Huo, M.Y. A tomic structure model of gold and its mineralization model. In Gold Economics; Tu, G.C., Huo, M.Y., Eds.; Science Press: Beijing, China, 1991; pp. 1–7. (In Chinese) [Google Scholar]
- Niu, S.Y.; Sun, A.Q.; Wang, B.D. Mantle Plume and Natural Resources Environment; Geological Publishing House: Beijing, China, 2007; pp. 1–183, (In Chinese with English abstract). [Google Scholar]
Ore Deposit | Reserve and Grade | Wall Rocks and Intrusions and Age | Orebody and Main Metallic Minerals | Metallogenic Age | Reference |
---|---|---|---|---|---|
Sanshandao-Cangshang NE Ductile-Brittle Fracture Zone | |||||
Northern sea area of Sanshandao | Au: 470 t, 4.23 ppm | Linglong gneissic granite, Guojiadian granite (zircon U-Pb 140–160 Ma); Guojialing granodiorite (zircon U-Pb 125–130 Ma) | Large veins and large lenses locally; Disseminated, einlet-reticulated pyrite-sericite cataclastic rock type ore; The main ore mineral in the ore is pyrite, followed by galena, Sphalerite, chalcopyrite, arsenopyrite, pyrrhotite, limonite, magnetite, etc. | - | [46,47] |
Sanshandao | Au: >20 t, 3.40 ppm | Jurassic granite (zircon U-Pb 127 ± 2 Ma) | Flat or lenticular; Pyrite sericite type and gold-bearing pyrite sericite granitic cataclastic rock type; It is mainly pyrite, followed by arsenopyrite, chalcopyrite, galena and sphalerite, etc. | Altered Sericite Rb-Sr isochron age 117.6 ± 3.0 Ma | [48] |
Xiling | Au: 383 t, 4.63 ppm | Linglong gneissic granite, Guojiadian granite (zircon U-Pb 140–160 Ma); Guojialing granodiorite (zircon U-Pb 125–130 Ma) | Large lenticular; Pyrite sericitized granitic cataclastic rocks type; pyrite, arsenopyrite, chalcopyrite, galena and sphalerite, etc. | - | [49] |
Xinli | Au: 112 t, 2.78 ppm | Linglong gneissic granite, Guojiadian granite (zircon U-Pb 140–160 Ma); Guojialing granodiorite (zircon U-Pb 125–130 Ma) | Large vein-type orebodylenticular; Veinlet-disseminated pyrite-sericite cataclastic rocks type; pyrite, arsenopyrite, chalcopyrite, galena and sphalerite, etc. | - | |
Cangshang | Au: 2 t, 4.93 ppm | Guojialing granodiorite (zircon U-Pb 127 ± 2 Ma) | lamellar; Pyrite sericitized cataclastic rocks type; pyrite, arsenopyrite, chalcopyrite, galena and sphalerite, etc. | Altered Sericite 40Ar–39Ar isochron age 121.3 ± 0.2 Ma | [50] |
Longkou-Laizhou NE Ductile-Brittle Fracture Zone | |||||
Jiaojia (deep) | Au: 73 t, 4.91 ppm | Linglong gneissic granite, Guojiadian granite (zircon U-Pb 153–160 Ma); Guojialing granodiorite (zircon U-Pb 126–130 Ma) | Stratiform and vein; Pyrite sericitized cataclastic rocks type; Pyrite, chalcopyrite, galena and sphalerite, etc. | Altered Sericite 40Ar–39Ar isochron age 120.5 ± 0.6 Ma; 120.1 ± 0.2 Ma; 120.2 ± 0.2Ma | [19,51,52] |
Xincheng | Au: 12 t, 3.32 ppm | Guojialing granodiorite (zircon U-Pb 127 ± 2 Ma) | Lamellar, branched, compound and dilated with shrinkage; Veinlet disseminated and reticulated ores; Pyrite, chalcopyrite and galena, etc. | Altered Sericite 40Ar–39Ar isochron age 120.2–120.9 Ma; Beresite Rb-Sr isochron age 116. 6 ± 5.3 Ma | [51,53,54] |
Hexi | Au: 13 t, 6.64 ppm | Linglong gneissic granite, Guojiadian granite (zircon U-Pb 153–160 Ma); Guojialing granodiorite (zircon U-Pb 126–130 Ma) | Lenticular, bifurcated along strike; Reticulated pyrite sericitized granitic cataclastic rock type type; Metal minerals are mainly pyrite, natural gold and bismuth tellurite, followed by chalcopyrite, galena, sphalerite, silver-gold ore, gold-silver ore, pyrrhotite, porphyry and malachite, etc. | Pyrite in ore Rb-Sr isochron age 112 Ma | [55,56] |
Shaling | Au: 389 t, 2.92 ppm | Linglong gneissic granite, Guojiadian granite (zircon U-Pb 153–160 Ma); Guojialing granodiorite (zircon U-Pb 126–130 Ma) | Lamellar, and veined, branched, compound, inflated and pinched Pyrite sericitized cataclastic rocks type; pyrite, arsenopyrite, chalcopyrite, galena and sphalerite, etc. | - | [15,46] |
Chronostratigraphy | Lithostratigraphy | Sequence Stratigraphy | Biota Radioactive Dating (Ma) | Sedimentary Environment | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Era | Period | Series | Group | Formation | Member | Grade 2 | Grade 3 | System | ||||||||
Mesozoic | Cretaceous | Upper aeries | Wangshi geoup | Jingangkou | Shijiatun basalt | Ms4 | Ksq7 | NLST | Skacrium-Phyrsa Mollusk fauna | Restrictedbasin | ||||||
Hongtuya | Protosaunus Dinosaur fauna | River | ||||||||||||||
68–70 | Layeredvolcano | |||||||||||||||
88 Ma | XI | Hadrosauridae Dinosaur fauna | River | |||||||||||||
Middle series | Xingezhuang | Ksq6 | LEST | Viuikaruc-Skhacrium Mollusk fauna Yanjiestheria Estheria fauna | Shallow lake | |||||||||||
Linjiazhuang | X | LLST | Psittacasaunue Dinosaur fauna | River | ||||||||||||
Pingshan group | Dasheng group | Fanggezhuan | Mengtuan Siqiangcun | Ms3 | IX | LEST LLST | 90–100 | Volcanic basin | Lake River | |||||||
112 Ma | Bamudi Shiqianzhuang | Tianjialou Malanggou | Ksq4 | LEST | Yanjiestherla Estheria fauna 100–110 | Lake | ||||||||||
Lower series | LLST | 110–120 | River | |||||||||||||
Datuling | VIII | LEST | Lake | |||||||||||||
Xiaodian | LLST | Rier | ||||||||||||||
VII | - | 120–126 | - | |||||||||||||
Houkuang | VI | |||||||||||||||
Laiyang group | Malianpo | Fajiaying | - | Ms2 | Ksq3 | - | Marine algae Bryozoon Foraminiferan | - | Restrictedgnlf | Restrictedlake | ||||||
Chengshanhou | Dncun | Qugezhuang | V | NLST | Nakamuranaia Bivalvian fauna | Volcanicbasin | - | |||||||||
Yangjiazhaung | Longwangzhuang | Ksq2 | LCST | - | River | Shallow lake | ||||||||||
Shuinan | LCS | Laiyang biota | Deep lake | |||||||||||||
Zhifengzhuang | IV | LEST | - | - | ||||||||||||
Linsishan | LLET | |||||||||||||||
Wawukuang | Ksq1 | LEST | Deep lake | |||||||||||||
137 Ma | LLST | - |
The Earth’s Layers | Mass Percentage of Crust-Mantle-Core (%) | Distribution of Gold | Distribution of Silver | ||||
---|---|---|---|---|---|---|---|
Abundance ppb | Weight Ratio ppb | Volume Ratio (%) | Abundance ppb | Weight Ratio ppb | Volume Ratio (%) | ||
Crust | 0.4 | 3.0 | 1.2 | 0.00423 | 80.0 | 32.0 | 0.01005 |
Mantle | 68.1 | 1.0 | 68.1 | 0.23962 | 55.0 | 3745.5 | 1.17495 |
Core | 31.5 | 900.0 | 28,350.0 | 99.75615 | 10,000.0 | 315,000.0 | 98.81500 |
Earth | 100.0 | 284.0 | 28,419.3 | 100.00000 | 3188.0 | 318,777.5 | 100.00000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Chen, C.; Zhang, J.; Zhang, F.; Wang, F.; Sun, A. The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong. Minerals 2019, 9, 249. https://doi.org/10.3390/min9040249
Niu S, Chen C, Zhang J, Zhang F, Wang F, Sun A. The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong. Minerals. 2019; 9(4):249. https://doi.org/10.3390/min9040249
Chicago/Turabian StyleNiu, Shuyin, Chao Chen, Jianzhen Zhang, Fuxiang Zhang, Fengxiang Wang, and Aiqun Sun. 2019. "The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong" Minerals 9, no. 4: 249. https://doi.org/10.3390/min9040249
APA StyleNiu, S., Chen, C., Zhang, J., Zhang, F., Wang, F., & Sun, A. (2019). The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong. Minerals, 9(4), 249. https://doi.org/10.3390/min9040249