Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sampling Procedure
3.2. Sample Preparation and Analytical Procedure
4. Results
4.1. Petrography
4.2. Trace Element Data
4.3. Sm-Nd Isotope Data
5. Discussion
5.1. Eudialyte Alteration and Mobilisation of HFSE
5.2. Nature of the Altering Fluids
5.3. Nd Isotopes: Evidence for Closed-System Fractionation
5.4. Implications for Resource Potential
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Full Sample Descriptions
Appendix A.1. 109202 (Catapleiite-Type)
Appendix A.2. 540286 (Catapleiite-Type)
Appendix A.3. 540269 (Catapleiite-Type)
Appendix A.4. 109211 (Gittinsite-Type)
Appendix A.5. EJH/12/091 (Zircon-Type)
References
- USGS. Rare Earths: Mineral Commodity Summaries 2018; Technical Report; United States Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Hatch, G.P. Dynamics in the Global Market for Rare Earths. Elements 2012, 8, 341–346. [Google Scholar] [CrossRef]
- Barakos, G.; Gutzmer, J.; Mischo, H. Strategic evaluations and mining process optimization towards a strong global REE supply chain. J. Sustain. Min. 2016, 15, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Zepf, V. The Way to the Chinese Predominance: A Key for Understanding the REE Issue. In Rare Earth Elements; Springer: Berlin/Heidelberg, Germany, 2011; Chapter 3; pp. 41–49. [Google Scholar]
- Brumme, A. Wind Energy Deployment and the Relevance of Rare Earths. In Wind Energy Deployment and the Relevance of Rare Earths; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; Chapter 3; pp. 17–48. [Google Scholar]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef] [Green Version]
- Van Gosen, B.S.; Verplanck, P.L.; Seal, R.R., II; Long, K.R.; Gambogi, J. Rare-Earth Elements, Chap. O of Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. In U.S. Geological Survey Professional Paper 1802; Schulz, K.J., DeYoung, J.H., Seal, R.R., II, Bradley, D.C., Eds.; USGS: Reston, VA, USA, 2017; Chapter O; pp. 1–31. [Google Scholar] [CrossRef]
- Adamas Intelligence. Rare Earth Market Outlook: Supply, Demand, and Pricing from 2016 through 2025: Executive Summary; Technical Report; Adamas Intelligence: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sørensen, H. Agpaitic nepheline syenites: A potential source of rare elements. Appl. Geochem. 1992, 7, 417–427. [Google Scholar] [CrossRef]
- Bailey, J.; Gwozdz, R.; Rose-Hansen, J. Geochemical overview of the IIímaussaq alkaline complex, South Greenland. Geol. Greenl. Surv. Bull. 2001, 190, 35–53. [Google Scholar]
- TANBREEZ. Tanbreez Ltd., Company Website. Available online: http://tanbreez.com/ (accessed on 30 May 2019).
- Bohse, H.; Brooks, C.; Kunzendorf, H. Field Observations on the Kakortokites of the Ilímaussaq Intrusion, South Greenland, Including Mapping and Analyses by Portable X-ray Fluorescence Equipment for Zirconium and Niobium; Technical Report; University of Copenhagen: Copenhagen, Denmark, 1971. [Google Scholar]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; et al. Igneous Rocks: A Classification and Glossary of Terms; Cambridge University Press: Cambridge, UK, 2003; p. 252. [Google Scholar]
- Johnsen, O.; Ferraris, G.; Gault, R.A.; Grice, J.D.; Kampf, A.R.; Pekov, I.V. The nomenclature of eudialyte-group minerals. Can. Mineral. 2003, 41, 785–794. [Google Scholar] [CrossRef]
- Borst, A.; Friis, H.; Nielsen, T.F.D.; Waight, T.E. Bulk and mush melt evolution in agpaitic intrusions: Insights from compositional zoning in eudialyte, Ilímaussaq complex, South Greenland. J. Petrol. 2018, 59, 589–612. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Schilling, J.; Wu, F.; McCammon, C.; Wenzel, T.; Marks, M.A.; Pfaff, K.; Jacob, D.E.; Markl, G. The compositional variability of eudialyte-group minerals. Mineral. Mag. 2011, 75, 87–115. [Google Scholar] [CrossRef]
- Stark, T.; Silin, I.; Wotruba, H. Mineral Processing of Eudialyte Ore from Norra Kärr. J. Sustain. Metall. 2017, 3, 32–38. [Google Scholar] [CrossRef]
- Davris, P.; Stopic, S.; Balomenos, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Miner. Eng. 2017, 108, 115–122. [Google Scholar] [CrossRef]
- Voßenkaul, D.; Birich, A.; Müller, N.; Stoltz, N.; Friedrich, B. Hydrometallurgical Processing of Eudialyte Bearing Concentrates to Recover Rare Earth Elements Via Low-Temperature Dry Digestion to Prevent the Silica Gel Formation. J. Sustain. Metall. 2017, 3, 79–89. [Google Scholar] [CrossRef]
- Coulson, I.M. Post-magmatic alteration in eudialyte from the North Qôroq centre, South Greenland. Mineral. Mag. 1997, 61, 99–109. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Liferovich, R.P. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos 2006, 91, 352–372. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Chakrabarty, A. Paragenesis and decomposition assemblage of a Mn-rich eudialyte from the Sushina peralkaline nepheline syenite gneiss, Paschim Banga, India. Lithos 2012, 152, 218–226. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D. Crystallization and destabilization of eudialyte-group minerals in peralkaline granite and pegmatite: A case study from the Ambohimirahavavy complex, Madagascar. Mineral. Mag. 2018, 82, 375–399. [Google Scholar] [CrossRef]
- Möller, V.; Williams-Jones, A. Magmatic and hydrothermal controls on the mineralogy of the basal zone, Nechalacho REE-Nb-Zr deposit, Canada. Econ. Geol. 2017, 112, 1823–1856. [Google Scholar] [CrossRef]
- Borst, A.; Friis, H.; Andersen, T.; Nielsen, T.F.D.; Waight, T.E.; Smit, M.A. Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineral. Mag. 2016, 80, 5–30. [Google Scholar] [CrossRef]
- Marks, M.A.; Markl, G. A global review on agpaitic rocks. Earth Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Karup-Møller, S.; Rose-Hansen, J.; Sørensen, H. Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Bull. Geol. Soc. Den. 2010, 58, 75–88. [Google Scholar]
- Karup-Møller, S.; Rose-Hansen, J. New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilímaussaq complex, South Greenland. Bull. Geol. Soc. Den. 2013, 61, 47–70. [Google Scholar]
- Ussing, N. Geology of the Country Around Julianehaab, Greenland; Bianco Luno: Copenhagen, Denmark, 1911; p. 376, Number 1. [Google Scholar]
- Hunt, E.J. Magma Chamber Dynamics in the Peralkaline Magmas of the Kakortokite Series, South Greenland. Ph.D. Thesis, University of St Andrews, St Andrews, UK, 2015. [Google Scholar]
- Krumrei, T.V.; Villa, I.M.; Marks, M.A.; Markl, G. A 40Ar/39Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: Implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex. Chem. Geol. 2006, 227, 258–273. [Google Scholar] [CrossRef]
- Upton, B. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geol. Surv. Den. Greenl. Bull. 2013, 2013, 1–128. [Google Scholar] [CrossRef]
- Upton, B.; Emeleus, C.H.; Heaman, L.M.; Goodenough, K.; Finch, A.A. Magmatism of the mid-Proterozoic Gardar Province, South Greenland: Chronology, petrogenesis and geological setting. Lithos 2003, 68, 43–65. [Google Scholar] [CrossRef]
- Konnerup-Madsen, J.; Rose-Hansen, J. Composition and significance of fluid inclusions in the Ilímaussaq peralkaline granite, South Greenland. Bull. De Minéralogie 1984, 107, 317–326. [Google Scholar] [CrossRef]
- Larsen, L.M.; Sorensen, H. The Ilímaussaq intrusion-progressive crystallization and formation of layering in an agpaitic magma. Geol. Soc. Lond. Spec. Publ. 1987, 30, 473–488. [Google Scholar] [CrossRef]
- Garde, A.A.; Hamilton, M.A.; Chadwick, B.; Grocott, J.; McCaffrey, K.J. The Ketilidian orogen of South Greenland: Geochronology, tectonics, magmatism, and fore-arc accretion during Palaeoproterozoic oblique convergence. Can. J. Earth Sci. 2002, 39, 765–793. [Google Scholar] [CrossRef]
- Sørensen, H.; Bohse, H.; Bailey, J. The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos 2006, 91, 286–300. [Google Scholar] [CrossRef]
- Marks, M.A. Layered intrusions. In Layered Intrusions; Charlier, B., Namur, O., Rais, L., Tegner, C., Eds.; Springer: Berlin, Germany, 2015; Chapter 14; pp. 649–691. [Google Scholar]
- Ratschbacher, B.C.; Marks, M.A.; Bons, P.D.; Wenzel, T.; Markl, G. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland. Lithos 2015, 231, 62–76. [Google Scholar] [CrossRef]
- Borst, A.; Waight, T.E.; Finch, A.A.; Storey, M.; Roux, P.J. Dating agpaitic rocks: A multi-system (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) isotopic study of layered nepheline syenites from the Ilímaussaq complex, Greenland. Lithos 2019, 324–325, 74–88. [Google Scholar] [CrossRef]
- Charlier, B.; Ginibre, C.; Morgan, D.; Nowell, G.M.; Pearson, D.G.; Davidson, J.P.; Ottley, C.J. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chem. Geol. 2006, 232, 114–133. [Google Scholar] [CrossRef]
- Vilalva, F.C.; Vlach, S.R.; Simonetti, A. Nacareniobsite-(Ce) and britholite-(Ce) in peralkaline granites from the Morro Redondo Complex, Graciosa Province, Southern Brazil: Occurrence and compositional data. Can. Mineral. 2013, 51, 313–332. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Mitchell, R.H.; Ren, M.; Sen, A.K.; Pruseth, K.L. Rinkite, cerianite-(Ce), and hingganite-(Ce) in syenite gneisses from the Sushina Hill Complex, India: Occurrence, compositional data and petrogenetic significance. Mineral. Mag. 2013, 77, 3137–3153. [Google Scholar] [CrossRef]
- Pekov, I.V.; Ekimenkova, I.A. Two new rare-earth-rich mineral associations in the Ilímaussaq alkaline complex, South Greenland. Geol. Greenl. Surv. Bull. 2001, 190, 143–144. [Google Scholar]
- Frei, D.; Liebscher, A.; Franz, G.; Berlin, D.; Dulski, P. Trace Element Geochemistry. Rev. Mineral. Geochem. 2004, 56, 553–605. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pfaff, K.; Krumrei, T.V.; Marks, M.A.; Wenzel, T.; Rudolf, T.; Markl, G. Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 2008, 106, 280–296. [Google Scholar] [CrossRef]
- Marks, M.A.; Vennemann, T.; Siebel, W.; Markl, G. Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilímaussaq intrusion, south Greenland. Geochim. Cosmochim. Acta 2004, 68, 3379–3395. [Google Scholar] [CrossRef]
- Lugmair, G.W. Sm-Nd ages: A new dating method. Meteoritics 1974, 9, 369. [Google Scholar]
- Goldstein, S.; O’Nions, S.; Hamilton, P. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet. Sci. Lett. 1984, 70, 221–236. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G.J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Friis, H. Primary and secondary mineralogy of the Ilímaussaq alkaline complex, South Greenland. In Proceedings of the Symposium on Strategic and Critical Materials Proceedings, Victoria, BC, Canada, 13–14 November 2015; Simandl, G., Neetz, M., Eds.; British Columbia Ministry of Energy and Mines: Victoria, BC, Canada, 2015; Volume 3, pp. 83–89. [Google Scholar]
- Salvi, S.; Fontan, F.; Monchoux, P.; Williams-Jones, A.; Moine, B. Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Econ. Geol. 2000, 95, 559–579. [Google Scholar] [CrossRef]
- Paslick, C.R.; Halliday, A.N.; Davies, G.R.; Mezger, K.; Upton, B. Timing of Proterozoic magmatism in the Gardar Province, southern Greenland. Geol. Soc. Am. Bull. 1993, 105, 272–278. [Google Scholar] [CrossRef]
- Marks, M.A.; Markl, G. Ilímaussaq ”en miniature”: Closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilímaussaq no.117). Mineral. Mag. 2003, 67, 893–919. [Google Scholar] [CrossRef]
- Chao, E.C.; Back, J.M.; Minkin, J.A.; Yinchen, R. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C. Appl. Geochem. 1992, 7, 443–458. [Google Scholar] [CrossRef]
- Boily, M.; Williams-Jones, A. The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Québec-Labrador. Contrib. Mineral. Petrol. 1994, 118, 33–47. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim. Cosmochim. Acta 1996, 60, 1917–1932. [Google Scholar] [CrossRef]
- Kynicky, J.; Chakhmouradian, A.R.; Xu, C.; Krmicek, L.; Galiova, M. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. Can. Mineral. 2011, 49, 947–965. [Google Scholar] [CrossRef]
- Sheard, E.R.; Williams-Jones, A.; Heiligmann, M.; Pederson, C.; Trueman, D.L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Gysi, A.P.; Williams-Jones, A. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochim. Cosmochim. Acta 2013, 122, 324–352. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D.; Williams-Jones, A. The origin of skarn-hosted rare-metal mineralization in the Ambohimirahavavy alkaline complex, Madagascar. Econ. Geol. 2015, 110, 1485–1513. [Google Scholar] [CrossRef]
- Hutchison, W.; Babiel, R.; Finch, A.; Marks, M.; Markl, G.; Boyce, A.; Stueeken, E.; Friis, H.; Borst, A.; Horsburgh, N. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth. Nat. Commun. 2019. under review. [Google Scholar]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.; Wagner, T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim. Cosmochim. Acta 2009, 73, 7087–7109. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Depos. 2014, 49, 987–997. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.; Brugger, J.; Caporuscio, F.A. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chem. Geol. 2016, 439, 13–42. [Google Scholar] [CrossRef] [Green Version]
- Migdisov, A.A.; Williams-Jones, A.; van Hinsberg, V.; Salvi, S. An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochim. Cosmochim. Acta 2011, 75, 7426–7434. [Google Scholar] [CrossRef]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim. Cosmochim. Acta 2017, 197, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Markl, G.; Baumgartner, L. pH changes in peralkaline late-magmatic fluids. Contrib. Mineral. Petrol. 2002, 144, 331–346. [Google Scholar] [CrossRef]
- Stevenson, R.; Upton, B.; Steenfelt, A. Crust-mantle interaction in the evolution of the Ilímaussaq Complex, South Greenland: Nd isotopic studies. Lithos 1997, 40, 189–202. [Google Scholar] [CrossRef]
- Goodenough, K.; Upton, B.; Ellam, R. Long-term memory of subduction processes in the lithospheric mantle: Evidence from the geochemistry of basic dykes in the Gardar Province of South Greenland. J. Geol. Soc. 2002, 159, 705–714. [Google Scholar] [CrossRef]
- Halama, R.; Wenzel, T.; Upton, B.; Siebel, W.; Markl, G. A geochemical and Sr-Nd-O isotopic study of the Proterozoic Eriksfjord Basalts, Gardar Province, South Greenland: Reconstruction of an OIB signature in crustally contaminated rift-related basalts. Mineral. Mag. 2003, 67, 831–853. [Google Scholar] [CrossRef]
- Barnes, G.; (Tanbreez Ltd.). Personal Communication, 2018.
Mineral | Formula | Catapleiite Type 1–4 | Zircon Type 1–3 | Gittinsite Type 4 |
---|---|---|---|---|
Catapleiite | (Na,Ca)2ZrSi3O9·2H2O | x | x | x |
Zircon | ZrSiO4 | x | ||
Gittinsite | CaZrSi2O7 | x | ||
Sr-Eudialyte | (Na,Sr)15Ca6(Fe,Mn)3Zr3(Si,Nb)2 | x | ||
Si24O72(O,OH,H2O)3(Cl,OH)2 | ||||
Aegirine | NaFe(Si2O6) | x | x | x |
Alkali feldspar | (Na,K)AlSi3O8 | x | x | |
Analcime | NaAlSi2O6·H2O | x | x | x |
Pectolite | NaCa2Si3O8(OH) | x | x | x |
Annite | KFe3(AlSi3O10)(OH)2 | x | ||
Fluorite | CaF2 | x | x | x |
Nacareniobsite-(Ce) | Na3Ca3(REE)Nb(Si2O7)2OF3 | x | x | x |
Allanite-(Ce) | (CaCe)(Al2Fe)Si2O7(SiO4)OOH | x | x | |
A1-type | (Ca,Ba,Ce)5(SiO4,PO4)3(OH,F) | x | x | x |
Ca-REE-P-silicates 1,2 | ||||
Apatite | Ca4.5REE0.5(PO4)3(F,Cl,OH) | x | x | |
Monazite-(Ce) | (Ce,La,Nd,Th)PO4 | x | x | |
Fergusonite-(Y) | YNbO4 | x | x |
Sample Code | Stratigraphic Level | Alteration Type | Eud (%) | Pmo (%) | Fsp (%) | Nph (%) | Arf (%) | Sod (%) | Anl (%) | Aeg (%) |
---|---|---|---|---|---|---|---|---|---|---|
Kakortokite | ||||||||||
109202 | 0R | catapleiite | 40 | 30 | 10 | 10 | 5 | 5 | ||
109211 | 3B | gittinsite | 2 | 8 | 20 | 20 | 40 | 10 | ||
540286 | 13R | catapleiite | 5 | 25 | 30 | 15 | 25 | |||
540269 | TLK-A | catapleiite | 10 | 30 | 10 | 15 | 10 | 5 | 20 | |
EJH/12/091 | Hybrid | zircon | - | 10 | 60 | 10 | 20 | |||
REE-minerals | ||||||||||
AF/16/28 | Roof zone, near Mt Illimaassaq | Epidote | ||||||||
AF/16/20 | Black lujavrite | Vitusite-(Ce) | ||||||||
520713 | Marginal Pegmatite Kringlerne | Rinkite-(Ce) | ||||||||
NJH/16/11 | Kvanefjeld | Nacareniobsite-(Ce) |
ID | 540286 | 2RSD | 540286 | 2RSD | 540269 | 2RSD | 540269 | 2RSD | 109202 | 2RSD | 109202 | 2RSD | EJH/12/091 | 2RSD | 109211 | 2RSD | 109211 | 2RSD | AF/16/28 | 2RSD | AF/16/20 | 2RSD | 520713 | 2RSD | NJH/16/11 | 2RSD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer | +13 Red | +13 Red | TLK-A Red | TLK-A Red | 0 Red | 0 Red | Hybrid | +3 Black | +3 Black | Roof Zone | Black Lujavrite | Marg. Pegmatite | Kvanefjeldt Dumps | |||||||||||||
Mineral | Eudialyte | Pseudomorph (cp) | Eudialyte | Pseudomorph (cp) | Eudialyte | Pseudomorph (cp) | Pseudomorph (zr) | Eudialyte | Pseudomorph (gt) | Epidote | Vitusite-(Ce) | Rinkite-(Ce) | Nacareniobsite-(Ce) | |||||||||||||
Li | 6 | 0.1 | 54 | 0.02 | 22 | 0.04 | 40 | 0.03 | 18 | 0.08 | 20 | 0.05 | 6 | 0.1 | 41 | 0 | 128 | 0 | 1 | 0.02 | 602 | 0.06 | 180 | 0.05 | 165 | 0.25 |
Be | 3 | 0.21 | 53 | 0.01 | - | 20 | 0.12 | 13 | 0.14 | 32 | 0.12 | 36 | 0.2 | 9 | 0.27 | - | 2 | 0.19 | 386 | 0.11 | n.d. | 40 | 0.19 | |||
Ti | 837 | 0.12 | 776 | 0.04 | 608 | 0.05 | 457 | 0.19 | - | 761 | 0.06 | - | 589 | 0.02 | - | 286 | 0.11 | - | 45,957 | 0.18 | 13,311 | 0.15 | ||||
Ni | n.d. | 262 | 0.16 | n.d. | 275 | 0.26 | n.d. | 498 | 0.17 | 151 | 0.22 | 71 | 0.25 | - | - | - | n.d. | n.d. | ||||||||
Ga | 85 | 0.24 | 95 | 0.08 | 110 | 0.11 | 113 | 0.04 | 85 | 0.22 | 97 | 0.07 | 122 | 0 | 92 | 0.01 | 97 | 0.13 | 76 | 0.03 | 661 | 0.21 | 685 | 0.12 | - | |
Rb | 25 | 0.19 | 342 | 0.11 | 86 | 0.15 | 128 | 0.18 | 38 | 0.18 | 135 | 0.15 | 96 | 0.16 | 32 | 0.16 | 147 | 0.07 | - | 1755 | 0.03 | 16 | 0.27 | 388 | 0.21 | |
Sr | 716 | 0 | 397 | 0.04 | 657 | 0.07 | 183 | 0.09 | 728 | 0.03 | 478 | 0.05 | 1612 | 0.01 | 3187 | 0 | 1822 | 0.02 | 2613 | 0 | 4175 | 0.25 | 1837 | 0.1 | 5948 | 0.13 |
Y | 5768 | 0.08 | 4387 | 0.11 | 6257 | 0.15 | 4878 | 0.16 | 5176 | 0.08 | 3886 | 0.13 | 2847 | 0.11 | 4551 | 0.11 | 2773 | 0.07 | 2 | 0.08 | 3302 | 0.07 | 17,051 | 0.05 | 4869 | 0.18 |
Zr | 116,361 | 0.04 | 97,267 | 0.04 | 99,634 | 0.14 | 73,951 | 0.16 | 108,994 | 0.03 | 89,997 | 0.12 | 59,813 | 0.09 | 96,756 | 0.24 | 81,561 | 0.06 | 4 | 0.17 | 1006 | 0.25 | 5261 | 0.02 | 289 | 0.02 |
Nb | 7530 | 0.1 | 5429 | 0.13 | 6038 | 0.17 | 4205 | 0.17 | 8628 | 0.1 | 6474 | 0.15 | 5057 | 0.11 | 4782 | 0.23 | 3373 | 0.07 | 1 | 0.02 | 386 | 0.29 | 43,888 | 0.05 | 78,965 | 0.21 |
Cs | 2 | 0.02 | 3 | 0.01 | 4 | 0.06 | 4 | 0.25 | 3 | 0 | 2 | 0.03 | n.d. | 6 | 0.12 | 9 | 0.24 | - | n.d. | n.d. | n.d. | |||||
Ba | 560 | 0.12 | 136 | 0.14 | 359 | 0.2 | 90 | 0.29 | 264 | 0.16 | 150 | 0.2 | 706 | 0.11 | 753 | 0.12 | 162 | 0.3 | 1 | 0.02 | n.d. | n.d. | n.d. | |||
La | 4679 | 0.06 | 3617 | 0.09 | 4985 | 0.13 | 3561 | 0.14 | 4529 | 0.07 | 3545 | 0.12 | 3992 | 0.08 | 3418 | 0.09 | 3263 | 0.06 | 2 | 0.08 | 40,307 | 0.01 | 39,311 | 0.05 | 21,917 | 0.19 |
Ce | 9787 | 0 | 7656 | 0.01 | 10,756 | 0.08 | 7562 | 0.13 | 8869 | 0.05 | 7041 | 0.1 | 7254 | 0.06 | 6793 | 0.03 | 5991 | 0.06 | 3 | 0.07 | 99,395 | 0.01 | 99,091 | 0.06 | 71,217 | 0.2 |
Pr | 1022 | 0.06 | 792 | 0.09 | 1182 | 0.14 | 835 | 0.14 | 928 | 0.04 | 742 | 0.1 | 714 | 0.1 | 689 | 0.11 | 609 | 0.04 | 1 | 0.11 | 10,658 | 0.05 | 11,883 | 0.08 | 9870 | 0.2 |
Nd | 3781 | 0.08 | 2862 | 0.09 | 4421 | 0.14 | 3113 | 0.14 | 3361 | 0.05 | 2662 | 0.11 | 2398 | 0.08 | 2493 | 0.1 | 2195 | 0.09 | 2 | 0.13 | 34,492 | 0.02 | 42,860 | 0.02 | 39,717 | 0.17 |
Sm | 787 | 0.06 | 576 | 0.08 | 947 | 0.18 | 664 | 0.18 | 675 | 0.08 | 522 | 0.15 | 416 | 0.13 | 525 | 0.13 | 402 | 0.02 | <1 | 4,389 | 0.05 | 6,734 | 0.07 | 6,698 | 0.17 | |
Eu | 76 | 0.03 | 53 | 0.09 | 90 | 0.16 | 65 | 0.19 | 66 | 0.06 | 47 | 0.07 | 33 | 0.09 | 49 | 0.08 | 34 | 0.04 | <1 | 314 | 0.21 | 538 | 0.14 | 505 | 0.25 | |
Gd | 805 | 0.03 | 582 | 0.06 | 926 | 0.12 | 670 | 0.11 | 712 | 0.01 | 530 | 0.07 | 402 | 0.05 | 576 | 0.06 | 393 | 0.04 | <1 | 2498 | 0.06 | 5103 | 0.05 | 4041 | 0.2 | |
Tb | 141 | 0.04 | 104 | 0.02 | 161 | 0.12 | 119 | 0.09 | 124 | 0.04 | 93 | 0.06 | 70 | 0.09 | 108 | 0.1 | 62 | 0.12 | - | 309 | 0.2 | 692 | 0.15 | - | ||
Dy | 956 | 0.04 | 715 | 0.06 | 1033 | 0.14 | 782 | 0.13 | 854 | 0.04 | 635 | 0.1 | 452 | 0.06 | 746 | 0.08 | 430 | 0.06 | <1 | 937 | 0.27 | 3,475 | 0.05 | 1537 | 0.19 | |
Ho | 205 | 0.05 | 158 | 0.01 | 219 | 0.13 | 166 | 0.09 | 184 | 0.05 | 139 | 0.04 | 102 | 0.07 | 168 | 0.07 | 91 | 0.18 | - | - | 506 | 0.18 | - | |||
Er | 634 | 0.03 | 490 | 0.06 | 644 | 0.13 | 495 | 0.11 | 580 | 0.03 | 438 | 0.1 | 317 | 0.09 | 518 | 0.12 | 303 | 0 | - | 180 | 0.23 | 1,178 | 0.08 | 195 | 0.18 | |
Tm | 92 | 0.27 | 73 | 0.18 | 95 | 0.06 | 72 | 0.04 | 84 | 0.26 | 65 | 0.14 | 50 | 0.05 | 80 | 0.02 | - | - | - | - | 16 | 0.11 | ||||
Yb | 557 | 0.02 | 427 | 0.01 | 548 | 0.12 | 423 | 0.09 | 509 | 0.04 | 393 | 0.03 | 293 | 0.03 | 455 | 0.04 | 282 | 0.04 | - | - | 708 | 0.15 | - | |||
Lu | 66 | 0.25 | 53 | 0.11 | 68 | 0.14 | 50 | 0.01 | 57 | 0.23 | 46 | 0.05 | 40 | 0.12 | 61 | 0.12 | - | - | - | 54 | 0.24 | n.d. | ||||
Hf | 1982 | 0.01 | 1653 | 0.01 | 1593 | 0.09 | 1180 | 0.08 | 2002 | 0.02 | 1696 | 0.06 | 1151 | 0.04 | 1663 | 0.05 | 1550 | 0.04 | <1 | - | 105 | 0.12 | 21 | 0.24 | ||
Ta | 447 | 0.11 | 358 | 0.07 | 400 | 0.06 | 291 | 0.03 | 624 | 0.1 | 489 | 0.01 | 208 | 0.28 | 226 | 0.05 | 294 | 0.18 | - | - | 968 | 0.09 | 2123 | 0.23 | ||
W | 246 | 0.24 | 27 | 0.29 | 149 | 0.16 | 25 | 0.27 | - | 62 | 0.25 | 32 | 0.13 | 592 | 0.16 | 50 | 0.21 | n.d. | n.d. | n.d. | n.d. | |||||
Pb | 94 | 0.17 | 54 | 0.12 | 171 | 0.05 | 27 | 0.19 | 145 | 0.25 | 223 | 0.21 | 68 | 0.13 | 85 | 0.18 | 62 | 0.17 | - | 3864 | 0.24 | - | - | |||
Th | 29 | 0 | 65 | 0.02 | 62 | 0.11 | 28 | 0.07 | 24 | 0.02 | 100 | 0.05 | 27 | 0.11 | 16 | 0.07 | 27 | 0.02 | - | 13,934 | 0.16 | 1362 | 0.15 | 317 | 0.21 | |
U | 62 | 0.29 | 73 | 0.18 | 79 | 0.08 | 57 | 0.02 | 37 | 0.21 | 41 | 0.09 | 20 | 0.09 | 29 | 0.03 | - | - | - | - | - | |||||
La/Yb | 8.4 | 8.5 | 9.1 | 8.4 | 8.9 | 9.0 | 13.6 | 7.5 | 11.6 | - | - | - | - | |||||||||||||
Gd/Yb | 1.4 | 1.4 | 1.7 | 1.6 | 1.4 | 1.3 | 1.4 | 1.3 | 1.4 | - | - | - | - | |||||||||||||
Sm/Nd | 0.21 | 0.20 | 0.21 | 0.21 | 0.20 | 0.20 | 0.17 | 0.21 | 0.18 | - | 0.13 | 0.16 | 0.17 |
ID | Type | Unit | 2σ * | 2σ * | 2σ * | εNd(t) | 2σ * | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
540286 | Eud | +13R | 0.211 | 0.512063 | 0.000005 | 0.1278 | 0.0006 | 0.51109 | 0.000007 | −1.0 | 0.1 | 1.27 |
540269 | Eud | TLK-A | 0.215 | 0.512085 | 0.000006 | 0.1302 | 0.0007 | 0.511094 | 0.000008 | −0.9 | 0.2 | 1.24 |
109202 | Eud | 0R | 0.205 | 0.512037 | 0.000005 | 0.1239 | 0.0006 | 0.511093 | 0.000007 | −0.9 | 0.1 | 1.27 |
109211 | Eud | +3B | 0.212 | 0.512058 | 0.000006 | 0.1281 | 0.0006 | 0.511083 | 0.000008 | −1.1 | 0.1 | 1.28 |
540286 | Pmo (cp) | +13R | 0.203 | 0.512039 | 0.000005 | 0.1230 | 0.0006 | 0.511102 | 0.000007 | −0.8 | 0.1 | 1.26 |
540269 | Pmo (cp) | TLK-A | 0.215 | 0.512075 | 0.000005 | 0.1297 | 0.0006 | 0.511087 | 0.000007 | −1.0 | 0.1 | 1.24 |
109202 | Pmo (cp) | 0R | 0.197 | 0.512006 | 0.000005 | 0.1193 | 0.0006 | 0.511098 | 0.000007 | −0.8 | 0.1 | 1.29 |
109211 | Pmo (gt) | +3B | 0.189 | 0.511970 | 0.000005 | 0.1143 | 0.0006 | 0.511100 | 0.000007 | −0.8 | 0.1 | 1.24 |
EJH/12/091 | Pmo (zr) | Hybrid | 0.174 | 0.511965 | 0.000005 | 0.1049 | 0.0005 | 0.511166 | 0.000007 | 0.5 | 0.1 | 1.12 |
AF/16/28 | Ep | 0.182 | 0.511891 | 0.000010 | 0.1097 | 0.0005 | 0.511055 | 0.000011 | −1.7 | 0.2 | 1.31 | |
AF/16/20 | Vit | 0.126 | 0.511678 | 0.000004 | 0.0761 | 0.0004 | 0.511098 | 0.000005 | −0.8 | 0.1 | 1.21 | |
520713 | Rkt | 0.158 | 0.511826 | 0.000005 | 0.0955 | 0.0005 | 0.511098 | 0.000006 | −0.8 | 0.1 | 1.22 | |
NJH/16/11 | Ncr | 0.173 | 0.511891 | 0.000005 | 0.1045 | 0.0005 | 0.511095 | 0.000007 | −0.9 | 0.1 | 1.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van de Ven, M.A.J.; Borst, A.M.; Davies, G.R.; Hunt, E.J.; Finch, A.A. Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals 2019, 9, 422. https://doi.org/10.3390/min9070422
van de Ven MAJ, Borst AM, Davies GR, Hunt EJ, Finch AA. Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals. 2019; 9(7):422. https://doi.org/10.3390/min9070422
Chicago/Turabian Stylevan de Ven, Mathijs A. J., Anouk M. Borst, Gareth R. Davies, Emma J. Hunt, and Adrian A. Finch. 2019. "Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade" Minerals 9, no. 7: 422. https://doi.org/10.3390/min9070422
APA Stylevan de Ven, M. A. J., Borst, A. M., Davies, G. R., Hunt, E. J., & Finch, A. A. (2019). Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals, 9(7), 422. https://doi.org/10.3390/min9070422