Using an Environment-Friendly Fertiliser from Sewage Sludge Ash with the Addition of Bacillus megaterium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Agronomic Management
2.2. Soil and Meteorological Conditions
2.3. Sampling and Analyses
2.3.1. Soil Moisture and Temperature
2.3.2. Soil pH
2.3.3. Content of Elements in Soil
2.3.4. Abundance of Heterotrophic Bacteria and Fungi
2.3.5. Earthworm (Lumbricidae) Occurrence
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Moisture and Temperature
3.2. Soil pH
3.3. Content of Toxic Elements in the Soil
3.4. Abundance of Heterotrophic Bacteria and Fungi
3.5. Earthworms (Lumbricidae) Occurrence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heredia, O.S.; Fernández Cirelli, A. Environmental risks of increasing phosphorus addition in relation to soil sorption capacity. Geoderma 2007, 137, 426–431. [Google Scholar] [CrossRef]
- Ahemad, M.; Zaidi, A.; Khan, M.S.; Oves, M. Biological importance of phosphorus and phosphate solubilizing microbes—An overview. In Phosphate Solubilizing Microbes for Crop Improvement; Nova: New York, NY, USA, 2009; pp. 1–14. [Google Scholar]
- Herrera-Estrella, L.; López-Arredondo, D. Phosphorus: The Underrated Element for Feeding the World. Trends Plant Sci. 2016, 21, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Mogollón, J.M.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Withers, P.J.A.; van Dijk, K.C.; Neset, T.S.S.; Nesme, T.; Oenema, O.; Rubæk, G.H.; Schoumans, O.F.; Smit, B.; Pellerin, S. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 2015, 44, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smol, M. The importance of sustainable phosphorus management in the circular economy (CE) model: The Polish case study. J. Mater. Cycles Waste Manag. 2019, 21, 227–238. [Google Scholar] [CrossRef]
- Smol, M.; Kulczycka, J.; Kowalski, Z. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus—Polish case study. J. Environ. Manag. 2016, 184, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Van Kauwenbergh, S.J. World Phosphate Rock Reserves and Resources; IFDC Muscle Shoals: Colbert County, AL, USA, 2010. [Google Scholar]
- Donatello, S.; Cheeseman, C.R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Manag. 2013, 33, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
- Nesme, T.; Metson, G.S.; Bennett, E.M. Global phosphorus flows through agricultural trade. Glob. Environ. Chang. 2018, 50, 133–141. [Google Scholar] [CrossRef]
- Günther, S.; Grunert, M.; Müller, S. Overview of recent advances in phosphorus recovery for fertilizer production. Eng. Life Sci. 2018, 18, 434–439. [Google Scholar] [CrossRef]
- Abis, M.; Calmano, W.; Kuchta, K. Innovative technologies for phosphorus recovery from sewage sludge ash. Detritus 2018. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Kirkelund, G.M.; Jensen, P.E. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 2013, 91, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Weigand, H.; Bertau, M.; Hübner, W.; Bohndick, F.; Bruckert, A. RecoPhos: Full-scale fertilizer production from sewage sludge ash. Waste Manag. 2013, 33, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Gorazda, K.; Tarko, B.; Wzorek, Z.; Kominko, H.; Nowak, A.K.; Kulczycka, J.; Henclik, A.; Smol, M. Fertilisers production from ashes after sewage sludge combustion—A strategy towards sustainable development. Environ. Res. 2017, 154, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Lekfeldt, J.D.S.; Rex, M.; Mercl, F.; Kulhánek, M.; Tlustoš, P.; Magid, J.; de Neergaard, A. Effect of bioeffectors and recycled P-fertiliser products on the growth of spring wheat. Chem. Biol. Technol. Agric. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Herzel, H.; Krüger, O.; Hermann, L.; Adam, C. Sewage sludge ash—A promising secondary phosphorus source for fertilizer production. Sci. Total Environ. 2016, 542, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Römer, W.; Steingrobe, B. Fertilizer effect of phosphorus recycling products. Sustainability (Switzerland) 2018, 10, 1166. [Google Scholar] [CrossRef]
- Severin, M.; Breuer, J.; Rex, M.; Stemann, J.; Adam, C.; Van den Weghe, H.; Kücke, M. Phosphate fertilizer value of heat treated sewage sludge ash. Plant Soil Environ. 2014, 60, 555–561. [Google Scholar] [CrossRef]
- Saeid, A.; Wyciszkiewicz, M.; Jastrzębska, M.; Chojnacka, K.; Gorecki, H. A concept of production of new generation of phosphorus-containing biofertilizers. BioFertP project. Przem. Chem. 2015, 94, 361–365. [Google Scholar] [CrossRef]
- El-Komy, H.M.A. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol. Biotechnol. 2005, 43, 19–27. [Google Scholar]
- Vary, P.S.; Biedendieck, R.; Fuerch, T.; Meinhardt, F.; Rohde, M.; Deckwer, W.D.; Jahn, D. Bacillus megaterium-from simple soil bacterium to industrial protein production host. Appl. Microbiol. Biotechnol. 2007, 76, 957–967. [Google Scholar] [CrossRef]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus solubilization by Bacillus species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef] [PubMed]
- Karpagam, T.; Nagalakshmi, P.K. Isolation and characterization of phosphate solubilizing microbes from agricultural soil. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 601–614. [Google Scholar]
- Galavi, M.; Yosefi, K.; Ramrodi, M.; Mousavi, S.R. Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with foliar application of micronutrients on yield, quality and phosphorus and zinc concentration of maize. J. Agric. Sci. 2011, 3, 22. [Google Scholar] [CrossRef]
- Sundara, B.; Natarajan, V.; Hari, K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res. 2002, 77, 43–49. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of soil and fertilizer phosphorus use. In FAO Fertilizer and Plant Nutrition Bulletin; FAO: Rome, Italy, 2008; Volume 18. [Google Scholar]
- Gadhave, K.R.; Devlin, P.F.; Ebertz, A.; Ross, A.; Gange, A.C. Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. Microb. Ecol. 2018, 76, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, M.; Kostrzewska, M.; Treder, K.; Makowski, P.; Saeid, A.; Jastrzębski, W.; Okorski, A. Fertiliser from sewage sludge ash instead of conventional phosphorus fertilisers? Plant Soil Environ. 2018, 64, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Balemi, T.; Negisho, K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. J. Soil Sci. Plant Nutr. 2012, 12, 547–561. [Google Scholar] [CrossRef]
- Latosińska, J. Influence of temperature and time of Sewage sludge incineration on the mobility of heavy metals. Environ. Prot. Eng. 2017, 43, 105–122. [Google Scholar] [CrossRef]
- Delcǎ, E.; Stere, I. Influence of chemical fertilizers and biofertilizers on the dynamics of some microbial groups (heterotrophic bacteria, free nitrogen-fixing bacteria) in Chernozem soil of dobrogea (Cumpǎna, valu lui traian). Rom. Agric. Res. 2012, 219–222. [Google Scholar]
- Sparling, G.P. Heat output of the soil biomass. Soil Biol. Biochem. 1981, 13, 373–376. [Google Scholar] [CrossRef]
- Filipov, F.; Bădeanu, M. Cosideration concerning on the biological neoformation resulting after some Lumbricide activities in greenhouses soils. Res. J. Agric. Sci. 2010, 42, 131–136. [Google Scholar]
- Rolewicz, M.; Rusek, P.; Mikos-Szymańska, M.; Cichy, B.; Dawidowicz, M. Obtaining of Suspension Fertilizers from Incinerated Sewage Sludge Ashes (ISSA) by a Method of Solubilization of Phosphorus Compounds by Bacillus megaterium Bacteria. Waste Biomass Valori. 2016, 7, 871–877. [Google Scholar] [CrossRef]
- Iuss Working Group WRB. World Reference Base For Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; update 2015. [Google Scholar]
- Kasprzak, K. Soil Oligochaeta. 3. Family: Earthworms (Lumbricidae); Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1986; p. 186. [Google Scholar]
- Statistica (Data Analysis Software System), Version 12; Statistica: Hamburg, Germany, 2014.
- Baranowski, R.; Pabin, J. Investigations of physical properties of soil in crop rotations with different percentage of cereals. Zesz. Probl. Post. Nauk Rol. 1979, 2018, 207–215. [Google Scholar]
- Brant, V.; Pivec, J.; Zábranský, P.; Hakl, J. Water consumption by Asteraceae weeds under field conditions. Weed Biol. Manag. 2012, 12, 71–83. [Google Scholar] [CrossRef]
- Yordanova, M.; Nikolov, A. Influence of Plant Density and Mulching on Growth and Yield of Lettuce (Lactuca sativa var. romana L.). Fields Interests 2017, 3, 5. [Google Scholar] [CrossRef]
- Wojkowski, J.; Skowera, B. Związek temperatury gleby z temperaturą powietrza w warunkach jurajskiej doliny rzecznej. Ecol. Eng. 2017, 18. [Google Scholar] [CrossRef]
- Sapek, B. Soil phosphorus accumulation and release–sources, processes, causes. Water Environ. Rural Areas 2014, 14, 45. [Google Scholar]
- Murdock, L.; Call, D. Managing Seasonal Fluctuations of Soil Tests; AGR-189; University of Kentucky Cooperative Extension: Lexington, Kentucky, 2006; pp. 1–3. [Google Scholar]
- Rouached, H.; Arpat, A.B.; Poirier, Y. Regulation of phosphate starvation responses in plants: Signaling players and cross-talks. Mol. Plant 2010, 3, 288–299. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.; Treder, K.; Jastrzębski, W.; Makowski, P. Phosphorus biofertilizers from ash and bones—Agronomic evaluation of functional properties. J. Agric. Sci. 2016, 8, 58–70. [Google Scholar] [CrossRef]
- Mohammadi, G.R.; Ghobadi, M.E.; Sheikheh-Poor, S. Phosphate biofertilizer, row spacing and plant density effects on corn (Zea mays L.) yield and weed growth. Am. J. Plant Sci. 2012, 3, 425. [Google Scholar] [CrossRef]
- Rosyadi, I. Studies on the Agricultural Utilization of Phosphate from Incinerated Sewage Sludge and Meat & Bone Meal; Cuvillier Verlag: Göttingen, Germany, 2004. [Google Scholar]
- Jastrzębska, M.; Kostrzewska, M.K.; Makowski, P.; Treder, K.; Jastrzębski, W.P. Granulated phosphorus fertilizer made of ash from biomass combustion and bones with addition of Bacillus megaterium in the field assessment. Part 3. Impact on selected properties of soil environment of winter wheat. Przem. Chem. 2017, 96, 2180–2183. [Google Scholar] [CrossRef]
- Václavková, Š.; Šyc, M.; Moško, J.; Pohořelý, M.; Svoboda, K. Fertilizer and Soil Solubility of Secondary P Sources—The Estimation of Their Applicability to Agricultural Soils. Environ. Sci. Technol. 2018, 52, 9810–9817. [Google Scholar] [CrossRef] [PubMed]
- Wyciszkiewicz, M.; Saeid, A.; Dobrowolska-Iwanek, J.; Chojnacka, K. Utilization of microorganisms in the solubilization of low-quality phosphorus raw material. Ecol. Eng. 2016, 89, 109–113. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.K.; Makowski, P.; Treder, K.; Marks, M. Effects of ash and bone phosphorus biofertilizers on bacillus megaterium counts and select biological and physical soil properties. Pol. J. Environ. Stud. 2015, 24, 1603–1609. [Google Scholar] [CrossRef]
- Gomathy, M.; Thangaraju, M.; Gunasekaran, S.; Gopal, N.O. Sporulation and regeneration efficiency of phosphobacteria (Bacillus megaterium var phosphaticum). Ind. J. Microbiol. 2007, 47, 259–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharczak-Moryl, E.; Moryl, A.; Żmuda, R. Influence of the environment on the content of arsenic in cultivated soils in Zgorzelec-Bogatynia region. Ecol. Eng. 2014, 2014, 107–116. [Google Scholar]
- Czarnowska, K. Total content of heavy metals in parent rocks as reference background levels of soils. Rocz. Glebozn. 1996, 47, 43–50. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Polish Scientific Publishing Company: Warsaw, Poland, 1999; p. 400. [Google Scholar]
- ME-PL. Ordinance by the Minister of the Environment (Poland) of 1 September 2016 on assessment procedures for the land surface pollution. J. Laws Repub. Poland 2016, 2016, 1395. [Google Scholar]
- IUNG. The Monitoring of the Chemistry of the Polish Arable Soils; Institute of Soil Science and Plant Cultivation (IUNG): Puławy, Poland, 2017. [Google Scholar]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, D.; Elloumi, N.; Jerbi, B.; Zouari, M.; Abdallah, F.B.; Ayadi, H.; Kallel, M. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ. Sci. Pollut. Res. 2016, 23, 20168–20177. [Google Scholar] [CrossRef] [PubMed]
- Jastrzȩbska, M.; Saeid, A.; Kostrzewska, M.K.; Basladyńska, S. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants: P-biofertilizers from waste and Cd and Pb in soil and plant. Open Chem. 2018, 16, 35–49. [Google Scholar] [CrossRef]
- Wołejko, E.; Łozowicka, B.; Kaczyński, P.; Konecki, R.; Grobela, M. The influence of chemical protection on the content of heavy metals in wheat (Triticum aestivum L.) growing on the soil enriched with granular sludge. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Wolinska, A. Dehydrogenase activity of soil microorganism and oxygen availability during reoxidation process of selected mineral soils from Poland. In Acta Agrophysica. Rozprawy i Monografie; Polska Akademia Nauk: Lublin, Poland, 2010. [Google Scholar]
- Natywa, M.; Selwet, M.; Maciejewski, T. Effect of some agrotechnical factors on the number and activity soil microorganisms. Fragm. Agron. 2014, 31, 56–63. [Google Scholar]
- Guan, G.; Tu, S.; Li, H.; Yang, J.; Zhang, J.; Wen, S.; Yang, L. Phosphorus fertilization modes affect crop yield, nutrient uptake, and soil biological properties in the rice-wheat cropping system. Soil Sci. Soc. Am. J. 2013, 77, 166–172. [Google Scholar] [CrossRef]
- Felici, C.; Vettori, L.; Giraldi, E.; Forino, L.M.C.; Toffanin, A.; Tagliasacchi, A.M.; Nuti, M. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 2008, 40, 260–270. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Kostrzewska, M.K.; Makowski, P.; Treder, K.; Jastrzębski, W.P. Functional properties of granulated ash and bone-based phosphorus biofertilizers in the field assessment. Part 3. Impact on selected properties of soil environment of winter wheat. Przem. Chem. 2016, 95, 1591–1594. [Google Scholar] [CrossRef]
- Gupta, R.; Mathimaran, N.; Wiemken, A.; Boller, T.; Bisaria, V.S.; Sharma, S. Non-target effects of bioinoculants on rhizospheric microbial communities of Cajanus cajan. Appl. Soil Ecol. 2014, 76, 26–33. [Google Scholar] [CrossRef]
- Tejada, M.; García-Martínez, A.M.; Gómez, I.; Parrado, J. Application of MCPA herbicide on soils amended with biostimulants: Short-time effects on soil biological properties. Chemosphere 2010, 80, 1088–1094. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.; Zhu, L.; Du, Z.; Zhang, C.; Wang, J.; Lv, D. Responses of soil microorganisms and enzymatic activities to azoxystrobin in cambisol. Pol. J. Environ. Stud. 2018, 27, 2775–2784. [Google Scholar] [CrossRef]
- Osman, A.G.; Va, E.; Bikov, K.V. Effect of New Broad Spectrum Fungicide Amistar on Soil Microorganisms in Field Conditions. J. Sci. Technol. 2005, 6, 207–213. [Google Scholar]
- Ahtiainen, J.H.; Vanhala, P.; Myllymäki, A. Effects of different plant protection programs on soil microbes. Ecotoxicol. Environ. Saf. 2003, 54, 56–64. [Google Scholar] [CrossRef]
- Kalia, A.; Gosal, S.K. Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci. 2011, 57, 569–596. [Google Scholar] [CrossRef]
- Lone, A.H.; Raverkar, K.P.; Pareek, N. In-vitro effects of herbicides on soil microbial communities. Bioscan 2014, 9, 11–16. [Google Scholar]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms, 3rd ed.; Chapman & Hall: London, UK, 1996; p. 426. [Google Scholar]
- Iordache, M.; Borza, I. Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant Soil Environ. 2010, 56, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Abbiramy, K.S.K.; Ross, P.R.; Paramanandham, J.P. Assessment of acute toxicity of superphosphate to Eisenia foetida using paper contact method. Asian J. Plant Sci. Res. 2013, 3, 112–115. [Google Scholar]
- Shruthi, N.; Biradar, A.P.; Muzammil, S. Toxic effect of inorganic fertilizers to earthworms (Eudrilus eugeniae). J. Entomol. Zool. Stud. 2017, 5, 1135–1137. [Google Scholar]
- Khan, M.U.; Ahmed, M.; Nazim, K. The population behavior of earth worm (Oheritema posthuma Kinberg) under the influence of industrial waste. FUUAST J. Biol. 2017, 7, 1–8. [Google Scholar]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef]
- Frimpong, J.O.; Ofori, E.S.K.; Yeboah, S.; Marri, D.; Offei, B.K.; Apaatah, F.; Sintim, J.O.; Ofori-Ayeh, E.; Osae, M. Evaluating the impact of synthetic herbicides on soil dwelling macrobes and the physical state of soil in an agro-ecosystem. Ecotoxicol. Environ. Saf. 2018, 156, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Castillejo, J.; Castro, R. The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: A two-year study in north-west Spain. Pest Manag. Sci. 2003, 59, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
P fertiliser | Treatment Symbol | P dose (kg/ha) | Fertiliser Characteristics (Elemental Composition of Fertilisers) |
---|---|---|---|
– | No P | 0 | Without P fertiliser |
Superphosphate | SP1 | 17.6 | Commercial fertiliser FosdarTM40 (17.6% P; 7.15% Ca; 2.00% S; trace presence: Fe, Zn, Cu, B, Co, Mn, Mo) |
SP2 | 26.4 | ||
SP3 | 35.2 | ||
Phosphorite | PR1 | 17.6 | Commercial fertiliser Syrian phosphorite (12.9% P; 35.3% Ca; 0.295% Mg; 3.14% Si; 1.61 g/kg Fe; 1.69 g/kg Al; 0.750 mg/kg As; 7.80 mg/kg Cd; 6.21 mg/kg Pb; 0.024 mg/kg Hg) |
PR2 | 26.4 | ||
PR3 | 35.2 | ||
Fertiliser from sewage sludge ash | SSAB1 | 17.6 | Suspension fertiliser manufactured from ash from the incineration of sewage sludge biomass from wastewater treatment, containing proliferating Bacillus megaterium (0.176% P; 0.590% C; 0.255% N; 0.487% K; 0.693% Ca; 0.119% Mg; 0.055% S; 1.68 g/kg Fe; 1.77 g/kg Al; 0.117 g/kg Zn; <LD mg/kg As; 0.274 mg/kg Cd; 5.94 mg/kg Cr; 55.0 mg/kg Cu; 2.45 mg/kg Ni; 10.4 mg/kg Pb); initial SSA content 30 g/L, inoculum content 10%, inoculum optical density (OD 620 nm)—0.600 |
SSAB2 | 26.4 | ||
SSAB3 | 35.2 |
Treatments | Wheat Tillering | Wheat Stem Elongation | Wheat Heading | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Soil Layer Depth, cm | ||||||||||
0–10 | 10–20 | 20–30 | 0–10 | 10–20 | 20–30 | 0–10 | 10–20 | 20–30 | ||
Moisture (Volumetric Water Content, %) | ||||||||||
P fertilisation | No P | 11.1a | 10.6a | 12.0a | 8.4a | 5.3a | 4.7a | 12.1a | 10.0a | 7.3a |
SP1 | 11.3a | 10.2a | 11.2a | 7.1a | 4.6a | 4.6a | 13.0a | 9.9a | 7.1a | |
SP2 | 10.7a | 10.3a | 11.0a | 7.8a | 5.4a | 4.5a | 11.9a | 9.1a | 5.8a | |
SP3 | 10.9a | 12.0a | 10.8a | 7.6a | 4.4a | 4.9a | 12.0a | 9.3a | 7.4a | |
PR1 | 10.1a | 9.6a | 10.1a | 7.3a | 2.8a | 3.8a | 12.7a | 9.8a | 5.1a | |
PR2 | 10.3a | 8.5a | 10.0a | 8.2a | 5.5a | 4.8a | 12.4a | 9.8a | 5.2a | |
PR3 | 9.9a | 8.9a | 9.2a | 8.0a | 4.1a | 4.0a | 12.2a | 9.5a | 6.8a | |
SSAB1 | 10.7a | 9.7a | 10.6a | 7.5a | 4.7a | 5.1a | 13.1a | 10.9a | 7.5a | |
SSAB2 | 10.2a | 10.6a | 11.1a | 6.7a | 4.4a | 5.1a | 11.2a | 9.8a | 7.6a | |
SSAB3 | 11.0a | 10.7a | 11.5a | 7.3a | 4.2a | 3.9a | 10.8a | 8.4a | 5.3a | |
Plant protection | −PP | 10.0B | 9.5B | 10.2A | 7.1B | 3.7B | 4.1B | 11.4B | 9.1B | 6.0B |
+PP | 11.2A | 10.7A | 11.2A | 8.1A | 5.4A | 4.9A | 12.9A | 10.2A | 7.0A | |
Temperature (°C) | ||||||||||
P fertilisation | No P | 17.8a | 18.1a | 18.1a | 16.8a | 16.8a | 16.8a | 25.1a | 24.9a | 24.8a |
SP1 | 17.4a | 17.2a | 17.4a | 16.9a | 16.9a | 16.9a | 24.3a | 24.3a | 24.1a | |
SP2 | 16.5a | 15.9a | 16.2a | 17.1a | 17.2a | 17.1a | 24.4a | 24.4a | 24.2a | |
SP3 | 16.0a | 15.9a | 15.9a | 17.0a | 17.0a | 17.0a | 24.4a | 24.3a | 24.0a | |
PR1 | 16.3a | 16.5a | 16.3a | 17.2a | 17.3a | 17.2a | 24.0a | 24.6a | 24.5a | |
PR2 | 16.5a | 16.5a | 16.4a | 16.9a | 17.1a | 16.9a | 24.6a | 24.6a | 24.4a | |
PR3 | 16.1a | 16.2a | 16.1a | 17.1a | 17.1a | 17.1a | 24.2a | 25.1a | 24.9a | |
SSAB1 | 16.4a | 16.2a | 16.4a | 16.9a | 17.0a | 16.9a | 24.6a | 24.5a | 24.2a | |
SSAB2 | 16.7a | 16.7a | 16.7a | 16.7a | 16.7a | 16.7a | 24.1a | 24.4a | 24.3a | |
SSAB3 | 16.1a | 16.1a | 16.1a | 16.8a | 16.8a | 16.8a | 24.7a | 25.0a | 24.7a | |
Plant protection | −PP | 16.0B | 16.0B | 16.0B | 17.5A | 17.6A | 17.5A | 25.0A | 25.2A | 24.9A |
+PP | 17.1A | 17.1A | 17.1A | 16.4B | 16.4B | 16.4B | 23.9B | 24.1B | 23.9B |
Treatments | At Wheat Leaf Development | After Wheat Harvest | |
---|---|---|---|
P fertilisation | No P | 5.15a | 5.19a |
SP1 | 5.25a | 5.26a | |
SP2 | 5.26a | 5.21a | |
SP3 | 5.13a | 5.15a | |
PR1 | 5.11a | 5.10a | |
PR2 | 5.11a | 5.18a | |
PR3 | 5.25a | 5.31a | |
SSAB1 | 5.18a | 5.21a | |
SSAB2 | 5.17a | 5.16a | |
SSAB3 | 5.18a | 5.18a | |
Plant protection | −PP | 5.15A | 5.22A |
+PP | 5.20A | 5.18A | |
Average | 5.18↓ | 5.20 |
Treatments | As | Cd | Cr | Ni | Pb | |
---|---|---|---|---|---|---|
P fertilisation | No P | 0.64a | 0.010a | 15.8a | 7.51a | 1.13a |
SP1 | 1.21a | 0.072a | 16.2a | 7.33a | 0.53a | |
SP2 | 0.50a | 0.062a | 16.3a | 7.63a | 2.32a | |
SP3 | 2.94a | 0.058a | 15.8a | 7.66a | 1.30a | |
PR1 | 1.83a | 0.091a | 15.2a | 7.48a | 1.24a | |
PR2 | 1.28a | 0.151a | 16.7a | 7.23a | 1.74a | |
PR3 | 0.50a | 0.010a | 15.5a | 7.13a | 2.49a | |
SSAB1 | 1.77a | 0.066a | 15.2a | 7.79a | 2.11a | |
SSAB2 | 0.66a | 0.047a | 15.4a | 7.62a | 0.50a | |
SSAB3 | 0.49a | 0.068a | 16.0a | 7.55a | 2.83a | |
Plant protection | −PP | 1.13A | 0.062A | 15.7A | 7.60A | 1.62A |
+PP | 1.23A | 0.065A | 15.9A | 7.39A | 1.62A | |
Average | 1.18 | 0.063↓ | 15.8↓ | 7.49↓ | 1.62↓ | |
Median | < LD | < LD | 14.8 | 7.34 | < LD | |
Max | 8.84 | 0.360 | 21.5 | 14. 8 | 11.9 |
Content | As | Cd | Cr | Ni | Pb | Reference | |
---|---|---|---|---|---|---|---|
Geochemical background for Poland | 2–13 | 0.03–1.00 | 2.0–64 | 0.5–28.5 | 5.0–59.0 | [56,57] | |
In surface level of Polish soils | 0.6–35 | 0.01–1.6 | 5–100 | 0.5–60 | 5–85 | [58] | |
Permissible in Poland in arable land | 10 | 2 | 150 | 100 | 100 | [59] | |
Monitoring of arable soils | —Poland | 0.73–20.7 | 0.02–68.0 | 2.4–49.1 | 1.0–71.1 | 4.5–857 | [60] |
—region | 1.52–3.87 | 0.07–0.18 | 4.5–30.6 | 2.6–29.8 | 7.6–14.4 |
Treatments | Bacteria | Fungi | |||
---|---|---|---|---|---|
Wheat Tillering | Wheat Heading | Wheat Tillering | Wheat Heading | ||
P fertilisation | No P | 51.1a | 73.1a | 0.76a | 2.00a |
SP1 | 52.4a | 81.9a | 0.47a | 1.87a | |
SP2 | 41.6a | 94.3a | 0.78a | 1.87a | |
SP3 | 47.5a | 70.7a | 0.91a | 2.33a | |
PR1 | 48.6a | 78.9a | 0.55a | 2.24a | |
PR2 | 52.7a | 62.6a | 0.72a | 1.48a | |
PR3 | 51.0a | 69.9a | 0.74a | 2.09a | |
SSAB1 | 61.3a | 75.3a | 0.55a | 1.54a | |
SSAB2 | 57.9a | 74.1a | 0.78a | 2.01a | |
SSAB3 | 40.8a | 71.0a | 0.72a | 1.59a | |
Plant protection | −PP | 56.5A | 81.5A | 0.91A | 2.63A |
+PP | 44.5B | 68.8A | 0.49B | 1.17B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastrzębska, M.; Kostrzewska, M.K. Using an Environment-Friendly Fertiliser from Sewage Sludge Ash with the Addition of Bacillus megaterium. Minerals 2019, 9, 423. https://doi.org/10.3390/min9070423
Jastrzębska M, Kostrzewska MK. Using an Environment-Friendly Fertiliser from Sewage Sludge Ash with the Addition of Bacillus megaterium. Minerals. 2019; 9(7):423. https://doi.org/10.3390/min9070423
Chicago/Turabian StyleJastrzębska, Magdalena, and Marta K. Kostrzewska. 2019. "Using an Environment-Friendly Fertiliser from Sewage Sludge Ash with the Addition of Bacillus megaterium" Minerals 9, no. 7: 423. https://doi.org/10.3390/min9070423
APA StyleJastrzębska, M., & Kostrzewska, M. K. (2019). Using an Environment-Friendly Fertiliser from Sewage Sludge Ash with the Addition of Bacillus megaterium. Minerals, 9(7), 423. https://doi.org/10.3390/min9070423