Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials
Abstract
:1. Introduction
2. Identities
2.1. Multiplication Formula
Acknowledgments
References
- Simsek, Y. Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their application. 2011; 1111.3848v1. [Google Scholar]
- Simsek, Y. q-analogue of the twisted l-series and q-twisted Euler numbers. J. Number Theory 2005, 110, 267–278. [Google Scholar] [CrossRef]
- Satoh, J. A construction of q-analogue of Dedekind sums. Nagoya Math. J. 1992, 127, 129–143. [Google Scholar]
- Carlitz, L. q-Bernoulli numbers and polynomials. Duke Math. J. 1948, 15, 987–1000. [Google Scholar] [CrossRef]
- Carlitz, L. q-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 1954, 76, 332–350. [Google Scholar]
- Choi, J.; Anderson, P.J.; Srivastava, H.M. Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions. Appl. Math. Comput. 2009, 215, 1185–1208. [Google Scholar] [CrossRef]
- Choi, J.; Anderson, P.J.; Srivastava, H.M. Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function. Appl. Math. Comput. 2008, 199, 723–737. [Google Scholar] [CrossRef]
- Luo, Q.-M.; Srivastava, H.M. Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2005, 10, 631–642. [Google Scholar] [CrossRef]
- Satoh, J. q-analogue of Riemann’s ζ-function and q-Euler Numbers. J. Number Theory 1989, 31, 346–362. [Google Scholar] [CrossRef]
- Kim, T. On Euler-Barnes multiple zeta functions. Russ. J. Math. Phys. 2003, 10, 261–267. [Google Scholar]
- Koblitz, N. On Carlitz’s q-Bernoulli numbers. J. Number Theory 1982, 14, 332–339. [Google Scholar] [CrossRef]
- Simsek, Y.; Kim, T.; Park, D.W.; Ro, Y.S.; Jang, L.C.; Rim, S.-H. An explicit formula for the multiple Frobenius-Euler numbers and polynomials. J. Algebra Number Theory Appl. 2004, 4, 519–529. [Google Scholar]
- Srivastava, H.M.; Kim, T.; Simsek, Y. q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series. Russ. J. Math Phys. 2005, 12, 241–268. [Google Scholar]
- Jang, L.C.; Kim, T. q-analogue of Euler Barnes’ numbers and polynomials. Bull. Korean Math. Soc. 2005, 42, 491–499. [Google Scholar]
- Kim, T. On a q-analogue of the p-adic log gamma functions and related integrals. J. Number Theory 1999, 76, 320–329. [Google Scholar] [CrossRef]
- Kim, T. An invariant p-adic integral associated with Daehee numbers. Integral Transform. Spec. Funct. 2002, 13, 65–69. [Google Scholar] [CrossRef]
- Kim, T. On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at q = −1. J. Math. Anal. Appl. 2007, 331, 779–792. [Google Scholar] [CrossRef]
- Kim, T. On the q-extension of Euler and Genocchi numbers. J. Math. Anal. Appl. 2007, 326, 1458–1465. [Google Scholar] [CrossRef]
- Kim, T. A note on some formulae for the q-Euler numbers and polynomials. Proc. Jangjeon Math. Soc. 2006, 9, 227–232. [Google Scholar]
- Kim, T. The modified q-Euler numbers and polynomials. Adv. Stud. Contemp. Math. 2008, 16, 161–170. [Google Scholar]
- Kim, T. A note on the alternating sums of powers of consecutive q-integers. Adv. Stud. Contemp. Math. 2005, 11, 137–140. [Google Scholar]
- Kim, T.; Jang, L.C.; Park, H.K. A note on q-Euler and Genocchi numbers. Proc. Jpn. Acad. 2001, 77, 139–141. [Google Scholar] [CrossRef]
- Kim, T.; Rim, S.-H. On the twisted q-Euler numbers and polynomials associated with basic q-l-functions. J. Math. Anal. Appl. 2007, 336, 738–744. [Google Scholar] [CrossRef]
- Kim, T.; Rim, S.-H. A new Changhee q-Euler numbers and polynomials associated with p-adic q-integral. Comput. Math. Appl. 2007, 54, 484–489. [Google Scholar] [CrossRef]
- Kim, T.; Jang, L.C.; Rim, S.-H.; Pak, H.K. On the twisted q-zeta functions and q-Bernoulli polynomials. Far East J. Appl. Math. 2003, 13, 13–21. [Google Scholar]
- Koblitz, N. A New proof of certain formulas for p-adic L-functions. Duke Math. J. 1979, 46, 455–468. [Google Scholar] [CrossRef]
- Rim, S.-H.; Kim, T. A note on q-Euler numbers associated with the basic q-zeta function. Appl. Math. Lett. 2007, 20, 366–369. [Google Scholar] [CrossRef]
- Ozden, H.; Simsek, Y. A new extension of q-Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 2008, 21, 934–939. [Google Scholar] [CrossRef]
- Ozden, H.; Simsek, Y.; Srivastava, H.M. A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 2010, 60, 2779–2787. [Google Scholar] [CrossRef]
- Schempp, W. A contour integral representation of Euler-Frobenius polynomials. J. Approx. Theory 1981, 31, 272–278. [Google Scholar] [CrossRef]
- Schempp, W. Euler-Frobenius polynomials. Numer. Methods Approx. Theory 1983, 7, 131–138. [Google Scholar]
- Shiratani, K. On Euler Numbers. Mem. Fac. Sci. Kyushu Univ. 1975, 27, 1–5. [Google Scholar] [CrossRef]
- Shiratani, K.; Yamamoto, S. On a p-adic interpolation function for the Euler numbers and its derivatives. Mem. Fac. Sci. Kyushu Univ. 1985, 39, 113–125. [Google Scholar] [CrossRef]
- Simsek, Y. Theorems on twisted L-functions and twisted Bernoulli numbers. Adv. Stud. Contemp. Math. 2005, 11, 205–218. [Google Scholar]
- Simsek, Y. Twisted (h,q)-Bernoulli numbers and polynomials related to twisted (h,q)-zeta function and L-function. J. Math. Anal. Appl. 2006, 324, 790–804. [Google Scholar] [CrossRef]
- Simsek, Y. On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers. Russ. J. Math. Phys. 2006, 13, 327–339. [Google Scholar] [CrossRef]
- Simsek, Y.; Yurekli, O.; Kurt, V. On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math. 2007, 15, 187–194. [Google Scholar]
- Simsek, Y.; Bayad, A.; Lokesha, V. q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers. Math. Meth. Appl. Sci. 2012, 35, 877–884. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inform. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta andq-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Srivastava, H.M.; Kurt, B.; Simsek, Y. Some families of Genocchi type polynomials and their interpolation functions. Integral Transform. Spec. Funct. 2012, 23, 919–938. [Google Scholar] [CrossRef]
- Tsumura, H. On a p-adic interpolation of the generalized Euler numbers and its applications. Tokyo J. Math. 1987, 10, 281–293. [Google Scholar] [CrossRef]
- Tsumura, H. A note on q-analogues of the Dirichlet series and q-Bernoulli numbers. J. Number Theory 1991, 39, 251–256. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Simsek, Y. Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials. Axioms 2012, 1, 395-403. https://doi.org/10.3390/axioms1030395
Simsek Y. Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials. Axioms. 2012; 1(3):395-403. https://doi.org/10.3390/axioms1030395
Chicago/Turabian StyleSimsek, Yilmaz. 2012. "Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials" Axioms 1, no. 3: 395-403. https://doi.org/10.3390/axioms1030395
APA StyleSimsek, Y. (2012). Generating Functions for q-Apostol Type Frobenius–Euler Numbers and Polynomials. Axioms, 1(3), 395-403. https://doi.org/10.3390/axioms1030395