The Ordered Weighted Average Human Development Index
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Human Development Index
2.2. HDI Calculation
2.2.1. Life Expectancy at Birth
2.2.2. Education: Expected Years of Schooling Mean Years of Schooling
2.2.3. Gross National Income
3. Methodology
3.1. Basic Formulations
3.2. Prioritized Induced Ordered Weighted Geometric Average
3.3. Numerical Example
4. The Human Development Index by Using PIOWGA Operator
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
R | Traditional | OWGAe1 | OWGAe2 | OWGAe3 | IOWGAe1 | IOWGAe2 | IOWGAe3 | POWGA | PIOWGA |
---|---|---|---|---|---|---|---|---|---|
1 | Norway | 0.9537 | 0.9572 | 0.9619 | 0.9638 | 0.9541 | 0.9615 | 0.9462 | 0.9609 |
2 | Switzerland | 0.9459 | 0.9484 | 0.9512 | 0.9553 | 0.9492 | 0.9506 | 0.9326 | 0.9512 |
3 | Ireland | 0.9425 | 0.9439 | 0.9457 | 0.9476 | 0.9438 | 0.9456 | 0.9362 | 0.9455 |
4 | Germany | 0.9388 | 0.9379 | 0.9364 | 0.9362 | 0.9390 | 0.9364 | 0.9400 | 0.9368 |
4 | Hong Kong, China (SAR) | 0.9388 | 0.9433 | 0.9472 | 0.9540 | 0.9443 | 0.9457 | 0.9171 | 0.9474 |
6 | Australia | 0.9384 | 0.9368 | 0.9340 | 0.9365 | 0.9418 | 0.9337 | 0.9318 | 0.9353 |
6 | Iceland | 0.9385 | 0.9380 | 0.9368 | 0.9393 | 0.9413 | 0.9367 | 0.9315 | 0.9377 |
8 | Sweden | 0.9366 | 0.9364 | 0.9358 | 0.9382 | 0.9393 | 0.9356 | 0.9294 | 0.9364 |
9 | Singapore | 0.9348 | 0.9439 | 0.9533 | 0.9602 | 0.9389 | 0.9507 | 0.9104 | 0.9519 |
10 | The Netherlands | 0.9335 | 0.9342 | 0.9350 | 0.9375 | 0.9357 | 0.9348 | 0.9258 | 0.9353 |
11 | Denmark | 0.9299 | 0.9305 | 0.9313 | 0.9321 | 0.9305 | 0.9313 | 0.9273 | 0.9312 |
12 | Finland | 0.9252 | 0.9240 | 0.9219 | 0.9237 | 0.9276 | 0.9218 | 0.9207 | 0.9229 |
13 | Canada | 0.9221 | 0.9221 | 0.9214 | 0.9248 | 0.9257 | 0.9211 | 0.9122 | 0.9223 |
14 | New Zealand | 0.9209 | 0.9177 | 0.9123 | 0.9140 | 0.9243 | 0.9119 | 0.9178 | 0.9143 |
15 | United Kingdom | 0.9204 | 0.9188 | 0.9162 | 0.9175 | 0.9225 | 0.9160 | 0.9174 | 0.9172 |
16 | United States | 0.9199 | 0.9239 | 0.9293 | 0.9296 | 0.9185 | 0.9289 | 0.9172 | 0.9277 |
17 | Belgium | 0.9188 | 0.9191 | 0.9190 | 0.9217 | 0.9215 | 0.9188 | 0.9109 | 0.9196 |
18 | Liechtenstein | 0.9167 | 0.9276 | 0.9396 | 0.9448 | 0.9182 | 0.9369 | 0.8967 | 0.9371 |
19 | Japan | 0.9147 | 0.9157 | 0.9144 | 0.9215 | 0.9221 | 0.9130 | 0.8941 | 0.9162 |
20 | Austria | 0.9138 | 0.9156 | 0.9175 | 0.9212 | 0.9169 | 0.9171 | 0.9020 | 0.9177 |
21 | Luxembourg | 0.9087 | 0.9190 | 0.9291 | 0.9368 | 0.9133 | 0.9260 | 0.8818 | 0.9276 |
22 | Israel | 0.9062 | 0.9044 | 0.9001 | 0.9046 | 0.9121 | 0.8993 | 0.8944 | 0.9023 |
22 | Korea (Republic of) | 0.9058 | 0.9054 | 0.9032 | 0.9085 | 0.9118 | 0.9024 | 0.8910 | 0.9050 |
24 | Slovenia | 0.9016 | 0.8991 | 0.8945 | 0.8970 | 0.9055 | 0.8941 | 0.8960 | 0.8964 |
25 | Spain | 0.8928 | 0.8940 | 0.8925 | 0.9001 | 0.9008 | 0.8908 | 0.8708 | 0.8944 |
26 | Czechia | 0.8908 | 0.8888 | 0.8855 | 0.8865 | 0.8928 | 0.8854 | 0.8890 | 0.8867 |
26 | France | 0.8911 | 0.8947 | 0.8967 | 0.9043 | 0.8979 | 0.8950 | 0.8677 | 0.8976 |
28 | Malta | 0.8853 | 0.8868 | 0.8864 | 0.8935 | 0.8924 | 0.8849 | 0.8644 | 0.8879 |
29 | Italy | 0.8826 | 0.8861 | 0.8867 | 0.8958 | 0.8914 | 0.8844 | 0.8553 | 0.8884 |
30 | Estonia | 0.8815 | 0.8799 | 0.8771 | 0.8782 | 0.8835 | 0.8770 | 0.8794 | 0.8782 |
31 | Cyprus | 0.8730 | 0.8746 | 0.8749 | 0.8812 | 0.8790 | 0.8738 | 0.8543 | 0.8761 |
32 | Greece | 0.8720 | 0.8698 | 0.8637 | 0.8698 | 0.8799 | 0.8622 | 0.8562 | 0.8667 |
32 | Poland | 0.8718 | 0.8697 | 0.8663 | 0.8680 | 0.8746 | 0.8661 | 0.8678 | 0.8677 |
34 | Lithuania | 0.8693 | 0.8685 | 0.8672 | 0.8655 | 0.8681 | 0.8671 | 0.8747 | 0.8673 |
35 | United Arab Emirates | 0.8664 | 0.8832 | 0.8998 | 0.9070 | 0.8687 | 0.8942 | 0.8383 | 0.8962 |
36 | Andorra | 0.8568 | 0.8714 | 0.8819 | 0.8941 | 0.8657 | 0.8756 | 0.8162 | 0.8812 |
36 | Saudi Arabia | 0.8570 | 0.8667 | 0.8784 | 0.8810 | 0.8559 | 0.8762 | 0.8451 | 0.8754 |
36 | Slovakia | 0.8569 | 0.8580 | 0.8592 | 0.8621 | 0.8594 | 0.8589 | 0.8476 | 0.8594 |
39 | Latvia | 0.8539 | 0.8528 | 0.8509 | 0.8498 | 0.8534 | 0.8508 | 0.8579 | 0.8513 |
40 | Portugal | 0.8502 | 0.8535 | 0.8531 | 0.8627 | 0.8598 | 0.8504 | 0.8218 | 0.8551 |
41 | Qatar | 0.8484 | 0.8755 | 0.8963 | 0.9095 | 0.8558 | 0.8840 | 0.8001 | 0.8927 |
42 | Chile | 0.8469 | 0.8452 | 0.8401 | 0.8459 | 0.8543 | 0.8387 | 0.8316 | 0.8428 |
43 | Brunei Darussalam | 0.8446 | 0.8680 | 0.8900 | 0.8977 | 0.8458 | 0.8810 | 0.8129 | 0.8850 |
43 | Hungary | 0.8447 | 0.8452 | 0.8454 | 0.8482 | 0.8474 | 0.8451 | 0.8362 | 0.8459 |
45 | Bahrain | 0.8378 | 0.8477 | 0.8575 | 0.8646 | 0.8418 | 0.8545 | 0.8127 | 0.8560 |
46 | Croatia | 0.8373 | 0.8368 | 0.8343 | 0.8394 | 0.8432 | 0.8334 | 0.8231 | 0.8360 |
47 | Oman | 0.8338 | 0.8429 | 0.8513 | 0.8591 | 0.8389 | 0.8483 | 0.8073 | 0.8503 |
48 | Argentina | 0.8301 | 0.8259 | 0.8185 | 0.8198 | 0.8340 | 0.8176 | 0.8286 | 0.8210 |
49 | Russian Federation | 0.8240 | 0.8252 | 0.8267 | 0.8254 | 0.8222 | 0.8266 | 0.8275 | 0.8260 |
50 | Belarus | 0.8171 | 0.8135 | 0.8072 | 0.8074 | 0.8193 | 0.8066 | 0.8187 | 0.8091 |
50 | Kazakhstan | 0.8172 | 0.8171 | 0.8169 | 0.8170 | 0.8174 | 0.8169 | 0.8170 | 0.8170 |
52 | Bulgaria | 0.8157 | 0.8141 | 0.8114 | 0.8134 | 0.8186 | 0.8112 | 0.8107 | 0.8126 |
52 | Montenegro | 0.8159 | 0.8133 | 0.8078 | 0.8116 | 0.8215 | 0.8069 | 0.8066 | 0.8102 |
52 | Romania | 0.8156 | 0.8177 | 0.8193 | 0.8242 | 0.8199 | 0.8185 | 0.8003 | 0.8198 |
55 | Palau | 0.8142 | 0.8107 | 0.8044 | 0.8035 | 0.8154 | 0.8038 | 0.8192 | 0.8061 |
56 | Barbados | 0.8133 | 0.8109 | 0.8034 | 0.8102 | 0.8224 | 0.8012 | 0.7962 | 0.8070 |
57 | Kuwait | 0.8084 | 0.8399 | 0.8653 | 0.8767 | 0.8126 | 0.8508 | 0.7637 | 0.8600 |
57 | Uruguay | 0.8078 | 0.8085 | 0.8064 | 0.8136 | 0.8155 | 0.8048 | 0.7872 | 0.8085 |
59 | Turkey | 0.8065 | 0.8122 | 0.8157 | 0.8243 | 0.8139 | 0.8132 | 0.7795 | 0.8164 |
60 | Bahamas | 0.8055 | 0.8116 | 0.8185 | 0.8229 | 0.8076 | 0.8172 | 0.7900 | 0.8173 |
61 | Malaysia | 0.8042 | 0.8111 | 0.8170 | 0.8245 | 0.8097 | 0.8147 | 0.7796 | 0.8167 |
62 | Seychelles | 0.8014 | 0.8055 | 0.8103 | 0.8137 | 0.8033 | 0.8095 | 0.7893 | 0.8095 |
63 | Serbia | 0.7993 | 0.7962 | 0.7900 | 0.7939 | 0.8051 | 0.7890 | 0.7902 | 0.7927 |
63 | Trinidad and Tobago | 0.7990 | 0.8062 | 0.8141 | 0.8188 | 0.8012 | 0.8124 | 0.7820 | 0.8127 |
65 | Iran (Islamic Republic of) | 0.7975 | 0.7978 | 0.7958 | 0.8021 | 0.8044 | 0.7946 | 0.7795 | 0.7977 |
66 | Mauritius | 0.7964 | 0.8001 | 0.8034 | 0.8091 | 0.8010 | 0.8021 | 0.7782 | 0.8035 |
67 | Panama | 0.7951 | 0.7997 | 0.8004 | 0.8104 | 0.8047 | 0.7972 | 0.7650 | 0.8022 |
68 | Costa Rica | 0.7935 | 0.7941 | 0.7875 | 0.7979 | 0.8057 | 0.7836 | 0.7656 | 0.7916 |
69 | Albania | 0.7914 | 0.7880 | 0.7778 | 0.7849 | 0.8016 | 0.7748 | 0.7747 | 0.7823 |
70 | Georgia | 0.7864 | 0.7797 | 0.7646 | 0.7631 | 0.7901 | 0.7608 | 0.7960 | 0.7688 |
71 | Sri Lanka | 0.7801 | 0.7764 | 0.7667 | 0.7726 | 0.7890 | 0.7642 | 0.7665 | 0.7708 |
72 | Cuba | 0.7777 | 0.7716 | 0.7527 | 0.7584 | 0.7895 | 0.7460 | 0.7687 | 0.7595 |
73 | Saint Kitts and Nevis | 0.7768 | 0.7880 | 0.7974 | 0.8063 | 0.7829 | 0.7932 | 0.7464 | 0.7963 |
74 | Antigua and Barbuda | 0.7762 | 0.7854 | 0.7905 | 0.8015 | 0.7855 | 0.7860 | 0.7412 | 0.7912 |
75 | Bosnia and Herzegovina | 0.7692 | 0.7688 | 0.7626 | 0.7713 | 0.7797 | 0.7596 | 0.7459 | 0.7662 |
76 | Mexico | 0.7674 | 0.7715 | 0.7731 | 0.7812 | 0.7750 | 0.7709 | 0.7427 | 0.7742 |
77 | Thailand | 0.7646 | 0.7693 | 0.7691 | 0.7796 | 0.7751 | 0.7654 | 0.7335 | 0.7712 |
78 | Grenada | 0.7634 | 0.7608 | 0.7559 | 0.7585 | 0.7675 | 0.7553 | 0.7575 | 0.7579 |
79 | Brazil | 0.7612 | 0.7625 | 0.7600 | 0.7684 | 0.7702 | 0.7576 | 0.7374 | 0.7624 |
79 | Colombia | 0.7609 | 0.7621 | 0.7574 | 0.7672 | 0.7719 | 0.7541 | 0.7340 | 0.7608 |
81 | Armenia | 0.7600 | 0.7550 | 0.7432 | 0.7475 | 0.7681 | 0.7403 | 0.7518 | 0.7476 |
82 | Algeria | 0.7590 | 0.7612 | 0.7581 | 0.7679 | 0.7696 | 0.7548 | 0.7312 | 0.7610 |
82 | North Macedonia | 0.7594 | 0.7595 | 0.7552 | 0.7633 | 0.7686 | 0.7529 | 0.7375 | 0.7581 |
82 | Peru | 0.7591 | 0.7593 | 0.7539 | 0.7628 | 0.7695 | 0.7510 | 0.7351 | 0.7573 |
85 | China | 0.7576 | 0.7636 | 0.7643 | 0.7755 | 0.7684 | 0.7601 | 0.7242 | 0.7663 |
85 | Ecuador | 0.7579 | 0.7555 | 0.7459 | 0.7538 | 0.7688 | 0.7424 | 0.7383 | 0.7503 |
87 | Azerbaijan | 0.7539 | 0.7558 | 0.7564 | 0.7624 | 0.7596 | 0.7552 | 0.7358 | 0.7574 |
88 | Ukraine | 0.7497 | 0.7435 | 0.7299 | 0.7300 | 0.7546 | 0.7267 | 0.7541 | 0.7340 |
89 | Dominican Republic | 0.7446 | 0.7490 | 0.7504 | 0.7590 | 0.7527 | 0.7479 | 0.7185 | 0.7517 |
89 | Saint Lucia | 0.7449 | 0.7461 | 0.7413 | 0.7510 | 0.7559 | 0.7379 | 0.7184 | 0.7447 |
91 | Tunisia | 0.7392 | 0.7406 | 0.7347 | 0.7453 | 0.7513 | 0.7306 | 0.7107 | 0.7386 |
92 | Mongolia | 0.7347 | 0.7323 | 0.7281 | 0.7296 | 0.7376 | 0.7277 | 0.7316 | 0.7296 |
93 | Lebanon | 0.7301 | 0.7375 | 0.7333 | 0.7484 | 0.7460 | 0.7255 | 0.6878 | 0.7376 |
94 | Botswana | 0.7278 | 0.7330 | 0.7385 | 0.7433 | 0.7308 | 0.7372 | 0.7116 | 0.7378 |
94 | Saint Vincent and the Grenadines | 0.7279 | 0.7292 | 0.7276 | 0.7347 | 0.7354 | 0.7259 | 0.7074 | 0.7295 |
96 | Jamaica | 0.7257 | 0.7227 | 0.7123 | 0.7196 | 0.7361 | 0.7088 | 0.7086 | 0.7169 |
96 | Venezuela (Bolivarian Republic of) | 0.7258 | 0.7230 | 0.7160 | 0.7211 | 0.7331 | 0.7143 | 0.7134 | 0.7191 |
98 | Dominica | 0.7238 | 0.7278 | 0.7205 | 0.7342 | 0.7392 | 0.7136 | 0.6871 | 0.7254 |
98 | Fiji | 0.7237 | 0.7202 | 0.7138 | 0.7120 | 0.7242 | 0.7129 | 0.7310 | 0.7153 |
98 | Paraguay | 0.7243 | 0.7279 | 0.7265 | 0.7365 | 0.7345 | 0.7232 | 0.6956 | 0.7289 |
98 | Suriname | 0.7237 | 0.7254 | 0.7249 | 0.7315 | 0.7304 | 0.7234 | 0.7043 | 0.7263 |
102 | Jordan | 0.7234 | 0.7214 | 0.7123 | 0.7202 | 0.7341 | 0.7089 | 0.7038 | 0.7166 |
103 | Belize | 0.7202 | 0.7167 | 0.7047 | 0.7121 | 0.7312 | 0.7005 | 0.7035 | 0.7098 |
104 | Maldives | 0.7187 | 0.7317 | 0.7314 | 0.7483 | 0.7352 | 0.7215 | 0.6693 | 0.7349 |
105 | Tonga | 0.7174 | 0.7109 | 0.6946 | 0.6951 | 0.7236 | 0.6897 | 0.7216 | 0.6996 |
106 | Philippines | 0.7119 | 0.7112 | 0.7074 | 0.7134 | 0.7190 | 0.7060 | 0.6956 | 0.7097 |
107 | Moldova (Republic of) | 0.7115 | 0.7068 | 0.6953 | 0.6998 | 0.7196 | 0.6924 | 0.7027 | 0.6997 |
108 | Turkmenistan | 0.7101 | 0.7186 | 0.7272 | 0.7328 | 0.7130 | 0.7247 | 0.6902 | 0.7258 |
108 | Uzbekistan | 0.7105 | 0.7053 | 0.6927 | 0.6964 | 0.7184 | 0.6894 | 0.7041 | 0.6972 |
110 | Libya | 0.7076 | 0.7132 | 0.7142 | 0.7244 | 0.7173 | 0.7104 | 0.6770 | 0.7159 |
111 | Indonesia | 0.7069 | 0.7105 | 0.7110 | 0.7194 | 0.7150 | 0.7085 | 0.6818 | 0.7126 |
111 | Samoa | 0.7068 | 0.7020 | 0.6876 | 0.6934 | 0.7172 | 0.6828 | 0.6953 | 0.6931 |
113 | South Africa | 0.7049 | 0.7068 | 0.7090 | 0.7067 | 0.7019 | 0.7087 | 0.7112 | 0.7078 |
114 | Bolivia (Plurinational State of) | 0.7028 | 0.6988 | 0.6888 | 0.6937 | 0.7110 | 0.6862 | 0.6922 | 0.6928 |
115 | Gabon | 0.7016 | 0.7097 | 0.7189 | 0.7226 | 0.7025 | 0.7169 | 0.6870 | 0.7169 |
116 | Egypt | 0.6997 | 0.7042 | 0.7046 | 0.7141 | 0.7089 | 0.7014 | 0.6716 | 0.7064 |
117 | Marshall Islands | 0.6976 | 0.6925 | 0.6736 | 0.6797 | 0.7097 | 0.6660 | 0.6875 | 0.6805 |
118 | Viet Nam | 0.6927 | 0.6926 | 0.6812 | 0.6924 | 0.7071 | 0.6748 | 0.6649 | 0.6869 |
119 | Palestine, State of | 0.6900 | 0.6869 | 0.6724 | 0.6809 | 0.7028 | 0.6664 | 0.6715 | 0.6784 |
120 | Iraq | 0.6888 | 0.7031 | 0.7127 | 0.7238 | 0.6971 | 0.7061 | 0.6515 | 0.7121 |
121 | Morocco | 0.6764 | 0.6853 | 0.6797 | 0.6958 | 0.6936 | 0.6702 | 0.6323 | 0.6846 |
122 | Kyrgyzstan | 0.6742 | 0.6686 | 0.6453 | 0.6481 | 0.6849 | 0.6345 | 0.6750 | 0.6528 |
123 | Guyana | 0.6703 | 0.6718 | 0.6689 | 0.6772 | 0.6793 | 0.6663 | 0.6471 | 0.6714 |
124 | El Salvador | 0.6667 | 0.6713 | 0.6662 | 0.6788 | 0.6804 | 0.6602 | 0.6322 | 0.6703 |
125 | Tajikistan | 0.6560 | 0.6511 | 0.6320 | 0.6375 | 0.6677 | 0.6238 | 0.6478 | 0.6388 |
126 | Cabo Verde | 0.6507 | 0.6573 | 0.6529 | 0.6666 | 0.6653 | 0.6457 | 0.6126 | 0.6570 |
126 | Guatemala | 0.6510 | 0.6626 | 0.6604 | 0.6765 | 0.6672 | 0.6507 | 0.6052 | 0.6643 |
126 | Nicaragua | 0.6511 | 0.6540 | 0.6424 | 0.6558 | 0.6675 | 0.6338 | 0.6175 | 0.6485 |
129 | India | 0.6469 | 0.6507 | 0.6486 | 0.6587 | 0.6574 | 0.6447 | 0.6180 | 0.6513 |
130 | Namibia | 0.6450 | 0.6512 | 0.6578 | 0.6620 | 0.6472 | 0.6562 | 0.6298 | 0.6566 |
131 | Timor-Leste | 0.6259 | 0.6371 | 0.6397 | 0.6528 | 0.6380 | 0.6325 | 0.5860 | 0.6416 |
132 | Honduras | 0.6230 | 0.6320 | 0.6211 | 0.6383 | 0.6425 | 0.6084 | 0.5789 | 0.6278 |
132 | Kiribati | 0.6232 | 0.6208 | 0.6097 | 0.6172 | 0.6341 | 0.6052 | 0.6060 | 0.6145 |
134 | Bhutan | 0.6173 | 0.6392 | 0.6448 | 0.6623 | 0.6329 | 0.6308 | 0.5631 | 0.6466 |
135 | Bangladesh | 0.6137 | 0.6192 | 0.6092 | 0.6238 | 0.6306 | 0.5996 | 0.5763 | 0.6151 |
135 | Micronesia (Federated States of) | 0.6142 | 0.6120 | 0.6009 | 0.6087 | 0.6253 | 0.5962 | 0.5960 | 0.6058 |
137 | Sao Tome and Principe | 0.6086 | 0.6076 | 0.5922 | 0.6024 | 0.6232 | 0.5837 | 0.5859 | 0.5989 |
138 | Congo | 0.6085 | 0.6115 | 0.6118 | 0.6189 | 0.6154 | 0.6097 | 0.5872 | 0.6132 |
138 | Eswatini (Kingdom of) | 0.6081 | 0.6184 | 0.6296 | 0.6329 | 0.6079 | 0.6266 | 0.5942 | 0.6269 |
140 | Lao People’s Democratic Republic | 0.6041 | 0.6144 | 0.6164 | 0.6290 | 0.6158 | 0.6095 | 0.5660 | 0.6183 |
141 | Vanuatu | 0.5968 | 0.5973 | 0.5817 | 0.5932 | 0.6126 | 0.5721 | 0.5711 | 0.5887 |
142 | Ghana | 0.5957 | 0.5943 | 0.5887 | 0.5944 | 0.6030 | 0.5868 | 0.5811 | 0.5915 |
143 | Zambia | 0.5915 | 0.5886 | 0.5806 | 0.5855 | 0.5988 | 0.5783 | 0.5803 | 0.5840 |
144 | Equatorial Guinea | 0.5884 | 0.6225 | 0.6492 | 0.6567 | 0.5887 | 0.6319 | 0.5551 | 0.6427 |
145 | Myanmar | 0.5843 | 0.5968 | 0.5994 | 0.6128 | 0.5967 | 0.5912 | 0.5434 | 0.6013 |
146 | Cambodia | 0.5815 | 0.5882 | 0.5803 | 0.5947 | 0.5975 | 0.5711 | 0.5438 | 0.5856 |
147 | Kenya | 0.5786 | 0.5783 | 0.5679 | 0.5773 | 0.5908 | 0.5624 | 0.5560 | 0.5729 |
147 | Nepal | 0.5795 | 0.5834 | 0.5696 | 0.5834 | 0.5967 | 0.5586 | 0.5465 | 0.5765 |
149 | Angola | 0.5745 | 0.5804 | 0.5848 | 0.5912 | 0.5796 | 0.5824 | 0.5534 | 0.5847 |
150 | Cameroon | 0.5627 | 0.5599 | 0.5545 | 0.5563 | 0.5662 | 0.5538 | 0.5595 | 0.5565 |
150 | Zimbabwe | 0.5631 | 0.5589 | 0.5484 | 0.5516 | 0.5698 | 0.5454 | 0.5575 | 0.5522 |
152 | Pakistan | 0.5604 | 0.5782 | 0.5813 | 0.5972 | 0.5750 | 0.5693 | 0.5124 | 0.5835 |
153 | Solomon Islands | 0.5573 | 0.5662 | 0.5476 | 0.5648 | 0.5788 | 0.5296 | 0.5184 | 0.5567 |
154 | Syrian Arab Republic | 0.5489 | 0.5634 | 0.5527 | 0.5718 | 0.5697 | 0.5360 | 0.5003 | 0.5598 |
155 | Papua New Guinea | 0.5431 | 0.5517 | 0.5506 | 0.5631 | 0.5555 | 0.5435 | 0.5071 | 0.5534 |
156 | Comoros | 0.5378 | 0.5390 | 0.5295 | 0.5396 | 0.5505 | 0.5232 | 0.5127 | 0.5344 |
157 | Rwanda | 0.5360 | 0.5417 | 0.5263 | 0.5409 | 0.5543 | 0.5129 | 0.5022 | 0.5339 |
158 | Nigeria | 0.5341 | 0.5417 | 0.5503 | 0.5524 | 0.5335 | 0.5484 | 0.5248 | 0.5482 |
159 | Tanzania (United Republic of) | 0.5283 | 0.5360 | 0.5306 | 0.5441 | 0.5428 | 0.5220 | 0.4918 | 0.5350 |
159 | Uganda | 0.5282 | 0.5259 | 0.5104 | 0.5177 | 0.5402 | 0.5025 | 0.5139 | 0.5165 |
161 | Mauritania | 0.5271 | 0.5419 | 0.5428 | 0.5578 | 0.5413 | 0.5321 | 0.4830 | 0.5456 |
162 | Madagascar | 0.5207 | 0.5229 | 0.5022 | 0.5135 | 0.5377 | 0.4872 | 0.4987 | 0.5107 |
163 | Benin | 0.5198 | 0.5192 | 0.5097 | 0.5178 | 0.5306 | 0.5048 | 0.5004 | 0.5142 |
164 | Lesotho | 0.5180 | 0.5188 | 0.5199 | 0.5203 | 0.5180 | 0.5198 | 0.5163 | 0.5196 |
165 | Côte d’Ivoire | 0.5157 | 0.5212 | 0.5245 | 0.5313 | 0.5215 | 0.5219 | 0.4943 | 0.5249 |
166 | Senegal | 0.5138 | 0.5359 | 0.5343 | 0.5534 | 0.5324 | 0.5168 | 0.4596 | 0.5386 |
167 | Togo | 0.5127 | 0.5096 | 0.4944 | 0.5000 | 0.5232 | 0.4872 | 0.5028 | 0.5001 |
168 | Sudan | 0.5075 | 0.5321 | 0.5361 | 0.5538 | 0.5236 | 0.5192 | 0.4537 | 0.5384 |
169 | Haiti | 0.5027 | 0.5050 | 0.4917 | 0.5030 | 0.5175 | 0.4820 | 0.4767 | 0.4979 |
170 | Afghanistan | 0.4960 | 0.5019 | 0.4902 | 0.5038 | 0.5122 | 0.4791 | 0.4629 | 0.4965 |
171 | Djibouti | 0.4954 | 0.5256 | 0.5282 | 0.5484 | 0.5141 | 0.5065 | 0.4357 | 0.5314 |
172 | Malawi | 0.4854 | 0.4878 | 0.4682 | 0.4789 | 0.5016 | 0.4536 | 0.4644 | 0.4762 |
173 | Ethiopia | 0.4698 | 0.4880 | 0.4792 | 0.4980 | 0.4897 | 0.4609 | 0.4213 | 0.4856 |
174 | Gambia | 0.4657 | 0.4715 | 0.4609 | 0.4737 | 0.4809 | 0.4506 | 0.4343 | 0.4667 |
174 | Guinea | 0.4655 | 0.4793 | 0.4773 | 0.4920 | 0.4801 | 0.4661 | 0.4240 | 0.4809 |
176 | Liberia | 0.4647 | 0.4698 | 0.4505 | 0.4630 | 0.4822 | 0.4341 | 0.4392 | 0.4588 |
177 | Yemen | 0.4627 | 0.4778 | 0.4652 | 0.4833 | 0.4829 | 0.4468 | 0.4187 | 0.4726 |
178 | Guinea-Bissau | 0.4614 | 0.4632 | 0.4557 | 0.4648 | 0.4725 | 0.4502 | 0.4383 | 0.4598 |
179 | Congo (Democratic Republic of the) | 0.4587 | 0.4604 | 0.4360 | 0.4423 | 0.4728 | 0.4173 | 0.4518 | 0.4446 |
180 | Mozambique | 0.4460 | 0.4498 | 0.4364 | 0.4478 | 0.4608 | 0.4255 | 0.4200 | 0.4427 |
181 | Sierra Leone | 0.4385 | 0.4378 | 0.4309 | 0.4372 | 0.4467 | 0.4276 | 0.4231 | 0.4342 |
182 | Burkina Faso | 0.4335 | 0.4515 | 0.4477 | 0.4643 | 0.4503 | 0.4323 | 0.3878 | 0.4521 |
182 | Eritrea | 0.4336 | 0.4642 | 0.4583 | 0.4802 | 0.4553 | 0.4323 | 0.3753 | 0.4644 |
184 | Mali | 0.4272 | 0.4464 | 0.4469 | 0.4624 | 0.4418 | 0.4328 | 0.3822 | 0.4499 |
185 | Burundi | 0.4229 | 0.4298 | 0.4057 | 0.4165 | 0.4404 | 0.3832 | 0.4052 | 0.4151 |
186 | South Sudan | 0.4128 | 0.4255 | 0.4220 | 0.4359 | 0.4269 | 0.4107 | 0.3745 | 0.4258 |
187 | Chad | 0.4012 | 0.4149 | 0.4173 | 0.4290 | 0.4119 | 0.4080 | 0.3656 | 0.4189 |
188 | Central African Republic | 0.3807 | 0.3812 | 0.3692 | 0.3768 | 0.3916 | 0.3615 | 0.3645 | 0.3743 |
189 | Niger | 0.3766 | 0.4017 | 0.3904 | 0.4104 | 0.3975 | 0.3654 | 0.3280 | 0.3978 |
References
- UNDP. Human Development Report 1990; Concept and Measurament of Human Development, United Nations: New York, NY, USA, 1990; Available online: http://www.hdr.undp.org/en/reports/global/hdr1990 (accessed on 27 June 2017).
- Sen, A. Development as Freedom, 2nd ed.; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M. A bibliometric analysis of aggregation operators. Appl. Soft Comput. 2019, 81, 105488. [Google Scholar] [CrossRef]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Baez-Palencia, D.; Olazabal-Lugo, M.; Romero-Muñoz, J. Toma de decisiones empresariales a través de la media ordenada ponderada. Inquietud Empresarial 2019, 19, 11–23. [Google Scholar]
- Yager, R.R. Induced aggregation operators. Fuzzy Sets Syst. 2003, 137, 59–69. [Google Scholar] [CrossRef]
- Yager, R.R. Heavy OWA operators. Fuzzy Optim. Decis. Mak. 2002, 1, 379–397. [Google Scholar] [CrossRef]
- Yager, R.R. Prioritized aggregation operators. Int. J. Approx. Reason. 2008, 48, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Merigó, J.M. Probabilities in the OWA operator. Expert Syst. Appl. 2012, 39, 11456–11467. [Google Scholar] [CrossRef]
- Yager, R.R. On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 2009, 50, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-García, V.G.; Merigó, J.M.; Gil-Lafuente, A.M.; Kacprzyk, J. Logarithmic aggregation operators and distance measures. Int. J. Intell. Syst. 2018, 33, 1488–1506. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2013, 22, 958–965. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.; Gil-Lafuente, A.M.; Merigó, J.M. New aggregation operators for decision-making under uncertainty: An applications in selection of entrepreneurial opportunities. Technol. Econ. Dev. Econ. 2018, 24, 335–357. [Google Scholar] [CrossRef] [Green Version]
- León-Castro, E.; Avilés-Ochoa, E.; Merigó, J.M. Induced heavy moving averages. Int. J. Intell. Syst. 2018, 33, 1823–1839. [Google Scholar] [CrossRef]
- León-Castro, E.; Espinoza-Audelo, L.F.; Merigó, J.M.; Herrera-Viedma, E.; Herrera, F. Measuring volatility based on ordered weighted average operators: Agricultural products prices case of use. Fuzzy Sets Syst. 2020, 395, 197–198. [Google Scholar] [CrossRef]
- Fonseca-Cifuentes, G.; León-Castro, E.; Blanco-Mesa, F. Predicting the future price of a commodity using the OWMA operator: An approximation of the interest rate and inflation in the brown pastusa potato price. J. Intell. Fuzzy Syst. 2021, 40, 1970–1981. [Google Scholar]
- Espinoza-Audelo, L.F.; Olazabal-Lugo, M.; Blanco-Mesa, F.; León-Castro, E.; Alfaro-Garcia, V. Bonferroni Probabilistic Ordered Weighted Averaging Operators Applied to Agricultural Commodities’ Price Analysis. Mathematics 2020, 8, 1350. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.; Rivera-Rubiano, J.; Patino-Hernandez, X.; Martinez-Montana, M. The importance of enterprise risk management in large companies in Colombia. Technol. Econ. Dev. Econ. 2019, 25, 600–633. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M. Bonferroni induced heavy operators in ERM decision-making: A case on large companies in Colombia. Appl. Soft Comput. 2018, 72, 371–391. [Google Scholar] [CrossRef]
- Mariño-Becerra, G.; Blanco-Mesa, F.; León-Castro, E. Pythagorean membership grade distance aggregation: An application to new business ventures. J. Intell. Fuzzy Syst. 2021, 40, 1827–1836. [Google Scholar] [CrossRef]
- Avilés-Ochoa, E.; León-Castro, E.; Perez-Arellano, L.A.; Merigó, J.M. Government transparency measurement through prioritized distance operators. J. Intell. Fuzzy Syst. 2018, 34, 2783–2794. [Google Scholar] [CrossRef] [Green Version]
- Perez-Arellano, L.A.; Leon-Castro, E.; Blanco-Mesa, F.; Fonseca-Cifuentes, G. The ordered weighted government transparency average: Colombia case. J. Intell. Fuzzy Syst. 2020, 40, 1837–1849. [Google Scholar] [CrossRef]
- Kelley, A.C. The human development index: “Handle with care”. Popul. Dev. Rev. 1991, 17, 315–324. [Google Scholar] [CrossRef]
- Sen, A. Equality of what? Tann. Lect. Hum. Values 1980, 1, 197–220. [Google Scholar]
- Yakunina, R.P.; Bychkov, G.A. Correlation analysis of the components of the human development index across countries. Procedia Econ. Financ. 2015, 24, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Zirogiannis, N.; Krutilla, K.; Tripodis, Y.; Fledderman, K. Human development over time: An empirical comparison of a Dynamic Index and the standard HDI. Soc. Indic. Res. 2019, 142, 773–798. [Google Scholar] [CrossRef]
- UNDP. Human Development Report 2019; UNDP: New York, NY, USA, 2019. [Google Scholar]
- Ranis, G.; Stewart, F. Success and failure in human development, 1970–2007. J. Hum. Dev. Capab. 2012, 13, 167–195. [Google Scholar] [CrossRef]
- Chaaban, J.; Irani, A.; Khoury, A. The composite global well-being index (CGWBI): A new multi-dimensional measure of human development. Soc. Indic. Res. 2016, 129, 465–487. [Google Scholar] [CrossRef]
- Hickel, J. The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 2020, 167, 106331. [Google Scholar] [CrossRef]
- Biggeri, M.; Mauro, V. Towards a more ‘sustainable’ human development index: Integrating the environment and freedom. Ecol. Indic. 2018, 91, 220–231. [Google Scholar] [CrossRef]
- Lind, N. A development of the human development index. Soc. Indic. Res. 2019, 146, 409–423. [Google Scholar] [CrossRef]
- Kovacevic, M. Measurement of inequality in Human Development–A review. Measurement 2010, 35, 1–65. [Google Scholar]
- Gaye, A.; Klugman, J.; Kovacevic, M.; Twigg, S.; Zambrano, E. Measuring key disparities in human development: The gender inequality index. Hum. Dev. Res. Pap. 2010, 46, 1–37. [Google Scholar]
- Alkire, S.; Jahan, S. The New Global MPI 2018: Aligning with the Sustainable Development Goals 2018; University of Oxford: Oxford, UK, 2018. [Google Scholar]
- Sayed, H.; Hamed, R.; Hosny, S.H.; Abdelhamid, A.H. Avoiding ranking contradictions in human development index using goal programming. Soc. Indic. Res. 2018, 138, 405–442. [Google Scholar] [CrossRef]
- Anand, S.; Sen, A. The income component of the human development index. J. Hum. Dev. 2000, 1, 83–106. [Google Scholar] [CrossRef]
- Maddison, A. Historical Statistics of the World Economy; OECD Publishing: Paris, France, 2003. [Google Scholar] [CrossRef]
- Kahneman, D.; Deaton, A. High Income Improves Evaluation of Life but not Emotional Well-being. Proc. Natl. Acad. Sci. USA 2010, 107, 16489–16493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merigó, J.M. Fuzzy decision making with immediate probabilities. Comput. Ind. Eng. 2010, 58, 651–657. [Google Scholar] [CrossRef]
- Olazabal-Lugo, M.; Leon-Castro, E.; Espinoza-Audelo, L.F.; Maria Merigo, J.; Gil Lafuente, A.M. Forgotten effects and heavy moving averages in exchange rate forecasting. Econ. Comput. Econ. Cybern. Stud. Res. 2019, 53, 79–96. [Google Scholar]
- Xu, Z.S.; Da, Q.-L. The uncertain OWA operator. Int. J. Intell. Syst. 2002, 17, 569–575. [Google Scholar] [CrossRef]
- Xu, Z.; Da, Q.-L. An overview of operators for aggregating information. Int. J. Intell. Syst. 2003, 18, 953–969. [Google Scholar] [CrossRef]
- Avilés-Ochoa, E.; Perez-Arellano, L.A.; León-Castro, E.; Merigó, J.M. Prioritized induced probabilistic distances in transparency and access to information laws. Fuzzy Econ. Rev. 2017, 22, 45–55. [Google Scholar] [CrossRef]
- Pérez-Arellano, L.A.; León-Castro, E.; Avilés-Ochoa, E.; Merigó, J.M. Prioritized induced probabilistic operator and its application in group decision making. Int. J. Mach. Learn. Cybern. 2019, 10, 451–462. [Google Scholar] [CrossRef]
- UNDP. Human Development; UNDP: New York, NY, USA, 2018. [Google Scholar]
- Merigo, J.M. La Media Ponderada Ordenada Probabilística: Teoría y Aplicaciones; Fundación Universitaria ESERP: Barcelona, Spain, 2014. [Google Scholar]
- Blanco-Mesa, F.; Merigó, J.M.; Gil-Lafuente, A.M. Fuzzy decision making: A bibliometric-based review. J. Intell. Fuzzy Syst. 2017, 32, 2033–2050. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Uchiyama, M.; Takahasi, S.-E. A refinement of various mean inequalities. J. Inequalities Appl. 1998, 1998, 932025. [Google Scholar] [CrossRef]
- Sinani, F.; Erceg, Z.; Vasiljević, M. An evaluation of a third-party logistics provider: The application of the rough Dombi-Hamy mean operator. Decis. Mak. Appl. Manag. Eng. 2020, 3, 92–107. [Google Scholar]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. dell’Unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M.; Xu, Z. Bonferroni means with induced ordered weighted average operators. Int. J. Intell. Syst. 2019, 34, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Dombi, J. Basic concepts for a theory of evaluation: The aggregative operator. Eur. J. Oper. Res. 1982, 10, 282–293. [Google Scholar] [CrossRef]
- Dombi, J. The Generalized Dombi Operator Family and the Multiplicative Utility Function. In Soft Computing Based Modeling in Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 115–131. [Google Scholar]
- Pamucar, D. Normalized weighted Geometric Dombi Bonferoni Mean Operator with interval grey numbers: Application in multicriteria decision making. Rep. Mech. Eng. 2020, 1, 44–52. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.; Merigó, J.M. Bonferroni distances and their application in group decision making. Cybern. Syst. 2020, 51, 27–58. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.; Gil-Lafuente, A.M.; Merigó, J.M. Subjective stakeholder dynamics relationships treatment: A methodological approach using fuzzy decision-making. Comput. Math. Organ. Theory 2018, 24, 441–472. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.; Çagman, N.; Wali, N.; Mushtaq, A. Certain properties of soft multi-set topology with applications in multi-criteria decision making. Decis. Mak. Appl. Manag. Eng. 2020, 3, 70–96. [Google Scholar] [CrossRef]
Dimension | Indicator | Minimum | Maximum |
---|---|---|---|
Health | Life expectancy (years) | 20 | 85 |
Education | Expected years of schooling (years) | 0 | 18 |
Mean years of schooling (years) | 0 | 15 | |
Standard of living | Gross national income per capita (2011 PPP $) | 100 | 75,000 |
Country | Life Expectancy at Birth | Expected Years of Schooling | Mean Years of Schooling | Gross National Income (GNI) per Capita |
---|---|---|---|---|
Norway | 82.3 | 18.1 | 12.6 | 68,059 |
R | T | OWGAe1 | OWGAe2 | OWGAe3 | IOWGAe1 | IOWGAe2 | IOWGAe3 | POWGA | IPOWGA |
---|---|---|---|---|---|---|---|---|---|
1 | NOR | NOR | NOR | NOR | NOR | NOR | NOR | NOR | NOR |
2 | CHE | CHE | SGP | SGP | CHE | SGP | DEU | FIN | AUS |
3 | IRL | SGP | CHE | CHE | HKG | CHE | IRL | NLD | SWE |
4 | HKG | IRL | HKG | HKG | IRL | HKG | CHE | DNK | DEU |
5 | DEU | HKG | IRL | IRL | AUS | IRL | AUS | SWE | LIE |
6 | ISL | ISL | LIE | LIE | ISL | LIE | ISL | ISL | ISL |
7 | AUS | DEU | ISL | ISL | SWE | ISL | SWE | AUS | IRL |
8 | SWE | AUS | DEU | SWE | DEU | DEU | DNK | CHE | HKG |
9 | SGP | SWE | SWE | NLD | SGP | SWE | NLD | IRL | CHE |
10 | NLD | NLD | NLD | LUX | NLD | NLD | FIN | DEU | SGP |
R | T | OWGAe1 | OWGAe2 | OWGAe3 | IOWGAe1 | IOWGAe2 | IOWGAe3 | POWGA | IPOWGA |
---|---|---|---|---|---|---|---|---|---|
91 | TUN | TUN | TUN | ARM | TUN | TUN | TON | MNG | TUN |
92 | MNG | LBN | LBN | TUN | LBN | MNG | DOM | FJI | BWA |
93 | LBN | BWA | MDV | BWA | DMA | UKR | LCA | TON | LEB |
94 | VCT | MNG | UKR | PRY | MNG | VCT | VEN | VEN | MDV |
95 | BWA | MDV | MNG | VCT | JAM | LBN | BWA | BWA | MNG |
96 | VEN | VCT | VCT | DMA | VCT | TKM | ZAF | TUN | VCT |
97 | JAM | PRY | TKM | TKM | MDV | SUR | TUN | JAM | PRY |
98 | PRY | DMA | PRY | SUR | PRY | PRY | JAM | VCT | SUR |
99 | DMA | SUR | SUR | UKR | JOR | MDV | VCT | SUR | TKM |
100 | FJI | VEN | DMA | MNG | VEN | GAB | SUR | JOR | DMA |
R | T | OWGAe1 | OWGAe2 | OWGAe3 | IOWGAe1 | IOWGAe2 | IOWGAe3 | POWGA | IPOWGA |
---|---|---|---|---|---|---|---|---|---|
180 | MOZ | ZAR | BFA | LBR | MOZ | ERI | MOZ | MOZ | BFA |
181 | SLE | BFA | MLI | MLI | ERI | BFA | YDR | YEM | MLI |
182 | ERI | MOZ | MOZ | MOZ | BFA | SLE | BDI | BDI | COD |
183 | BFA | MLI | ZAR | ZAR | SLE | MOZ | BFA | BFA | MOZ |
184 | MLI | SLE | SLE | SLE | MLI | ZAR | MLI | MLI | SLE |
185 | BDI | BDI | SSD | SSD | BDI | SSD | ERI | ERI | SSD |
186 | SSD | SSD | TCD | TCD | SSD | TCD | SSD | SSD | TCD |
187 | TCD | TCD | BDI | BDI | TCD | BDI | TCD | TCD | BDI |
188 | CAF | NER | NER | NER | NER | NER | CAF | CAF | NER |
189 | NER | CAF | CAF | CAF | CAF | CAF | NER | NER | CAF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon-Castro, E.; Blanco-Mesa, F.; Romero-Serrano, A.M.; Velázquez-Cazares, M. The Ordered Weighted Average Human Development Index. Axioms 2021, 10, 87. https://doi.org/10.3390/axioms10020087
Leon-Castro E, Blanco-Mesa F, Romero-Serrano AM, Velázquez-Cazares M. The Ordered Weighted Average Human Development Index. Axioms. 2021; 10(2):87. https://doi.org/10.3390/axioms10020087
Chicago/Turabian StyleLeon-Castro, Ernesto, Fabio Blanco-Mesa, Alma Montserrat Romero-Serrano, and Marlenne Velázquez-Cazares. 2021. "The Ordered Weighted Average Human Development Index" Axioms 10, no. 2: 87. https://doi.org/10.3390/axioms10020087
APA StyleLeon-Castro, E., Blanco-Mesa, F., Romero-Serrano, A. M., & Velázquez-Cazares, M. (2021). The Ordered Weighted Average Human Development Index. Axioms, 10(2), 87. https://doi.org/10.3390/axioms10020087