Generalizations of Hermite–Hadamard Type Integral Inequalities for Convex Functions
Abstract
:1. Backgrounds and Motivations
2. Two Lemmas
3. New Integral Inequalities of Hermite–Hadamard Type
- 1.
- if , then
- 2.
- if and , then
4. Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Type Inequalities and Applications, Amended Version, RGMIA Monographs, Victoria University. 2002. Available online: https://rgmia.org/monographs/hermite_hadamard.html (accessed on 20 June 2021).
- Hadamard, J. Étude sur les propriétes des fonctions entiéres et en particulier d’une fonction considerée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1993. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications: A Contemporary Approach. In CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Pachpatte, B.G. Analytic Inequalities: Recent Advances. In Atlantis Studies in Mathematics, 3; Atlantis Press: Paris, France, 2012. [Google Scholar] [CrossRef]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications. In Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
- Cao, J.; Srivastava, H.M.; Liu, Z.-G. Some iterated fractional q-integrals and their applications. Fract. Calc. Appl. Anal. 2018, 21, 672–695. [Google Scholar] [CrossRef]
- Set, E.; Choi, J.; Çelİk, B. Certain Hermite–Hadamard type inequalities involving generalized fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2018, 112, 1539–1547. [Google Scholar] [CrossRef]
- Mehrez, K.; Agarwal, P. New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Duc, D.T.; Hue, N.N.; Nhan, N.D.V.; Tuan, V.K. Convexity according to a pair of quasi-arithmetic means and inequalities. J. Math. Anal. Appl. 2020, 488, 124059. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Yin, H.-P.; Guo, B.-N. Generalizations of Hermite–Hadamard Type Integral Inequalities for Convex Functions. Axioms 2021, 10, 136. https://doi.org/10.3390/axioms10030136
Wu Y, Yin H-P, Guo B-N. Generalizations of Hermite–Hadamard Type Integral Inequalities for Convex Functions. Axioms. 2021; 10(3):136. https://doi.org/10.3390/axioms10030136
Chicago/Turabian StyleWu, Ying, Hong-Ping Yin, and Bai-Ni Guo. 2021. "Generalizations of Hermite–Hadamard Type Integral Inequalities for Convex Functions" Axioms 10, no. 3: 136. https://doi.org/10.3390/axioms10030136
APA StyleWu, Y., Yin, H. -P., & Guo, B. -N. (2021). Generalizations of Hermite–Hadamard Type Integral Inequalities for Convex Functions. Axioms, 10(3), 136. https://doi.org/10.3390/axioms10030136