Two Inverse Problems Solution by Feedback Tracking Control
Abstract
:1. Introduction
2. Input Restoration Problem
2.1. Ill-Posed Problem Formulation
2.2. Optimal Control Problem Reformulation
2.3. Stable Differentiation Problem
3. Linear System Coefficients Restoration Problem
3.1. Problem Statement
3.2. Optimal Control Problem Reformulation
4. Solution of Bilinear-Quadratic Tracking Problem
4.1. Linear-Quadratic Approximation
4.2. Iterative Solution
4.3. Feedback Linearization
4.4. Numerical Example
5. Conclusions
Funding
Conflicts of Interest
References
- Solopchenko, G.N. Inverse problems in measurement. Measurement 1987, 5, 10–19. [Google Scholar] [CrossRef]
- Solopchenko, G.N. Formal metrological components of measuring systems. Measurement 1994, 13, 1–12. [Google Scholar] [CrossRef]
- Aronov, P.M.; Lyashenko, E.A.; Ryashko, L.B. Method of optimum linear-estimation for determining dynamic characteristics of measuring devices. Meas. Tech. 1991, 34, 1091–1096. [Google Scholar] [CrossRef]
- Granovskii, V.A. Models and methods of dynamic measurements: Results presented by St. Petersburg metrologists. In Advanced Mathematical and Computational Tools in Metrology and Testing X; Pavese, F., Bremser, W., Chunovkina, A., Fischer, N., Forbes, A., Eds.; World Scientific Publishing Company: Singapore, 2015; Volume 86, pp. 29–37, Series on Advances in Mathematics for Applied Sciences. [Google Scholar]
- Frieden, B.R. Image enhancement and restoration. In Picture Processing and Digital Filtering; Huang, T.S., Ed.; Springer: New York, NY, USA, 1979. [Google Scholar]
- Bates, R.H.T.; McDonnell, J. Image Restoration and Reconstruction; The Oxford Engineering Science Series; Clarendon Press: Oxford, UK, 1986; Volume 16. [Google Scholar]
- Jansson, P. Deconvolution: With Applications in Spectroscopy; Academic Press: New York, NY, USA, 1984. [Google Scholar]
- Claerbout, J.F. Imaging the Earth’s Interior; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- Prutkin, I. Gravitational and magnetic models of the core-mantle boundary and their correlation. J. Geodyn. 2008, 45, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.B. Applications of System Identification and Parameter Estimation in Water Quality Modeling; IIASA Working Paper WP-79-099; IIASA: Laxenburg, Austria, 1979. [Google Scholar]
- Isaksson, A.J. Some aspects of industrial system identification. IFAC Proc. Vol. 2013, 46, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Worden, K.; Barthorpe, R.J.; Cross, E.J.; Dervilis, N.; Holmes, G.R.; Manson, G.; Rogers, T.J. On evolutionary system identification with applications to nonlinear benchmarks. Mech. Syst. Signal Process. 2018, 112, 194–232. [Google Scholar] [CrossRef]
- Bellman, R. Mathematical Methods in Medicine; Modern Applied Mathematics; World Scientific: Singapore, 1983; Volume 1. [Google Scholar]
- Schwilden, H.; Honerkamp, J.; Eister, C. Pharmacokinetic model identification and parameter estimation as an ill-posed problem. Eur. J. Clin. Pharmacol. 1993, 45, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Marinov, T.T.; Marinova, R.S. Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models. Chaos Solitons Fractals X 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Korolev, I. Identification and estimation of the SEIRD epidemic model for COVID-19. J. Econom. 2021, 220, 63–85. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, A.N.; Arsenin, V.I. Solution of Ill-Posed Problems; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Bakushinsky, A.; Goncharsky, A. Ill-Posed Problems: Theory and Applications; Kluwer: Dordrecht, The Netherlands, 1994; Volume 301, Mathematics and Its Applications; [Google Scholar]
- Ivanov, V.; Vasin, V.; Tanana, V. Theory of Linear Ill-Posed Problems and Its Applications; Inverse and Ill-Posed Problems Series; Walter De Gruyter: Berlin, Germany, 2002; Volume 36. [Google Scholar]
- Balakrishnan, A.V. Applied Functional Analysis; Springer: New York, NY, USA, 1976. [Google Scholar]
- Wang, Y.; Yagola, A.M.; Yang, C. (Eds.) Optimization and Regularization for Computational Inverse Problems and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kryazhimskiy, A.V.; Osipov, Y.S. Inverse Problems for Ordinary Differential Equations: Dynamical Solutions; Taylor and Francis: Basel, Switzerland, 1995. [Google Scholar]
- Abidi, M.A.; Gribok, A.V.; Paik, J. Frequency-domain implementation of regularization. In Optimization Techniques in Computer Vision: Ill-Posed Problems and Regularization; Springer International Publishing: Cham, Switzerland, 2016; pp. 113–130. [Google Scholar]
- Ljung, L. System Identification (2nd Ed.): Theory for the User; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Perona, P.; Porporato, A.; Ridolfi, L. On the trajectory method for the reconstruction of differential equations from time series. Nonlinear Dyn. 2000, 23, 13–33. [Google Scholar] [CrossRef]
- Maksimov, V.I. Dynamical identification of unknown characteristics in systems of the second order. In Proceedings of the 2001 European Control Conference, Porto, Portugal, 4–7 September 2001; pp. 1261–1265. [Google Scholar]
- Subbotina, N.N.; Tokmantsev, T.B.; Krupennikov, E.A. On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method. Proc. Steklov Inst. Math. 2015, 291, 253–262. [Google Scholar] [CrossRef]
- Subbotina, N.N.; Krupennikov, E.A. The method of characteristics in an identification problem. Proc. Steklov Inst. Math. 2017, 299, 205–216. [Google Scholar] [CrossRef]
- Turetsky, V.Y.; Lemsh, E.S. A feedback control in linear system identification. IFAC Proc. Vol. 1996, 29, 1–4. [Google Scholar] [CrossRef]
- Jha, B.; Turetsky, V.; Shima, T. Robust path tracking by a Dubins ground vehicle. IEEE Trans. Control Syst. Technol. 2019, 27, 2614–2621. [Google Scholar] [CrossRef]
- Hofer, E.; Tibker, B. An iterative method for the finite-time bilinear-quadratic control problem. J. Optim. Theory Appl. 1988, 57, 411–427. [Google Scholar] [CrossRef]
- Isidori, A. Nonlinear Control Systems, 2nd ed.; Springer-Verlag: London, UK, 1989. [Google Scholar]
- Turetsky, V. Robust trajectory tracking for a feedback linearizable nonlinear system. IFAC Pap. 2016, 49, 540–545. [Google Scholar] [CrossRef]
- Mellodge, P. A Practical Approach to Dynamical Systems for Engineers; Woodhead Publishing Series in Mechanical Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kwakernaak, H.; Sivan, R. Linear Optimal Control Systems; Wiley-Interscience: New York, NY, USA, 1972. [Google Scholar]
- Slotine, J.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
LQ-approximation | ||
Iterative solution | ||
Feedback linearization |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turetsky, V. Two Inverse Problems Solution by Feedback Tracking Control. Axioms 2021, 10, 137. https://doi.org/10.3390/axioms10030137
Turetsky V. Two Inverse Problems Solution by Feedback Tracking Control. Axioms. 2021; 10(3):137. https://doi.org/10.3390/axioms10030137
Chicago/Turabian StyleTuretsky, Vladimir. 2021. "Two Inverse Problems Solution by Feedback Tracking Control" Axioms 10, no. 3: 137. https://doi.org/10.3390/axioms10030137
APA StyleTuretsky, V. (2021). Two Inverse Problems Solution by Feedback Tracking Control. Axioms, 10(3), 137. https://doi.org/10.3390/axioms10030137