The Key Success Factors for Attracting Foreign Investment in the Post-Epidemic Era
Abstract
:1. Introduction
- (1)
- Constructing a framework of indicators for foreign investment in the post-epidemic era, which is more suitable for under-resourced contexts because they will be important indicators for attracting foreign investment in the post-epidemic era.
- (2)
- The proposed model will be able to quantify natural semantics more effectively because it can quantify incomplete, uncertain, and inconsistent information at the same time.
- (3)
- The opinions obtained will be more objective and reliable because objective expert weights are used to integrate the opinions of the group.
- (4)
- By identifying the causal relationships and visualizing the results of the analysis, it helps to simplify the complex evaluation system, so that the root causes of problems can be explored and response strategies can be developed more effectively.
2. Literature Review
2.1. Global Competitiveness Index (GCI)
2.2. Methods for Exploring Key Indicators
2.3. Ambiguity of Natural Semantics
2.4. Integration of Expert Opinions
3. Methodology
3.1. Innovativeness of the Model
3.2. Analytical Processes of the Proposed Method
- (1)
- Constructing the core evaluation framework;
- (2)
- Measuring incomplete, uncertain, and inconsistent information;
- (3)
- Obtaining expert weights and integrating opinions among experts;
- (4)
- Evaluating causal relationships of the core indicators.
- (1)
- First Stage: Constructing a core evaluation framework
- (2)
- Second Stage: Measuring incomplete, uncertain, and inconsistent information
- (3)
- Third Stage: Calculating expert weights and integrating opinions among experts
- (4)
- Fourth Stage: Evaluation of causal relationships of the core system
- Drawing the scatter diagram
- b.
- Retaining the relatively higher influence relationships
- c.
- Marking the influence relationships between systems
4. Case Study Results and Analysis
4.1. Establishment of the Core Evaluation System
4.2. Measuring Incomplete, Uncertain, and Inconsistent Information
4.3. Obtaining Objective Expert Weights and Integration of Opinions
4.4. Evaluation of Causal Relationships of the Core Indicators
4.5. Comparative Analysis and Sensitivity Analysis
- (1)
- Comparative analysis
- (2)
- Sensitivity analysis
5. Discussions
5.1. Management Implications
5.2. Theoretical Implications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Haroon, M.B.; Hui, J. Coronavirus Disease 2019 (COVID-19) Pandemic and economic impact. Pak. J. Med Sci. 2020, 36, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Bakar, N.A.; Rosbi, S. Effect of Coronavirus disease (COVID-19) to tourism industry. Int. J. Adv. Eng. Res. Sci. 2020, 7, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S. Coronavirus Disease 2019 (COVID-19): We shall overcome. Clean Technol. Environ. Policy 2020, 22, 545–546. [Google Scholar] [CrossRef] [Green Version]
- Dutta, A.; Bouri, E.; Uddin, G.S.; Yahya, M. Impact of COVID-19 on global energy markets. In IAEE Energy Forum Covid-19 Issue; IAEE: Cleveland, OH, USA, 2020; pp. 26–29. [Google Scholar]
- Bajpai, N.; (Columbia University, New York, NY, USA); Biberman, J.; (Columbia University, New York, NY, USA). Personal communication, 2012.
- Kruczek, Z.; Kruczek, M. Post-industrial tourism as a means to revitalize the environment of the former oil basin in the Polish Carpathian Mountains. Pol. J. Environ. Stud. 2016, 25, 895–902. [Google Scholar] [CrossRef]
- Lortie, P. Entrepreneurial Finance and Economic Growth: A Canadian Overview; C.D. HOWE Institute: Toronto, SD, Canada, 2019. [Google Scholar]
- Enderwick, P. The economic growth and development effects of China’s One Belt, One Road Initiative. Strateg. Chang. 2018, 27, 447–454. [Google Scholar] [CrossRef]
- Tao, R.; Glonț, O.R.; Li, Z.Z.; Lobonț, O.R.; Guzun, A.A. New evidence for Romania regarding dynamic causality between military expenditure and sustainable economic growth. Sustainability 2020, 12, 5053. [Google Scholar] [CrossRef]
- Yoade, A.O.; Adeyemi, O.O.; Adeyemi, B.A. Assessment of urban renewal projects implementation and its socio-economic impacts in Ado-Ekiti, Nigeria. J. Urban Regen. Renew. 2020, 14, 98–116. [Google Scholar]
- Jobarteh, F.; Selemani, M. Assessing the Effect of Agriculture Sub-sectors on the Gambia’s Economic Growth Using Time Series Econometric Models. Int. J. Agric. Econ. 2020, 5, 142. [Google Scholar] [CrossRef]
- Domazet, I.S.; Marjanović, D.M. FDI as a Factor of Improving the Competitiveness of Developing Countries: FDI and Competitiveness. In Foreign Direct Investments (FDIs) and Opportunities for Developing Economies in the World Market; IGI Global: Hershey, PA, USA, 2018; pp. 82–104. [Google Scholar]
- Miroudot, S. The Reorganization of Global Value Chains in East Asia before and after COVID-19. East Asian Econ. Rev. 2020, 24, 389–416. [Google Scholar] [CrossRef]
- Strange, R. The 2020 Covid-19 pandemic and global value chains. J. Ind. Bus. Econ. 2020, 47, 455–465. [Google Scholar] [CrossRef]
- Duan, W.; Zhu, S.; Lai, M. The impact of COVID-19 on China’s trade and outward FDI and related countermeasures. J. Chin. Econ. Bus. Stud. 2020, 18, 355–364. [Google Scholar] [CrossRef]
- Dimitrova, A.; Rogmans, T.; Triki, D. Country-specific determinants of FDI inflows to the MENA region. Multinatl. Bus. Rev. 2019, 28, 1–38. [Google Scholar] [CrossRef]
- Noon, P.; De Vita, G.; Appleyard, L. What do we know about the impact of intellectual property rights on the foreign direct investment location (country) choice? A review and research agenda. J. Econ. Surv. 2019, 33, 665–688. [Google Scholar] [CrossRef]
- Paul, J.; Feliciano-Cestero, M.M. Five decades of research on foreign direct investment by MNEs: An overview and research agenda. J. Bus. Res. 2021, 124, 800–812. [Google Scholar] [CrossRef]
- Kim, J.U.; Aguilera, R.V. Foreign location choice: Review and extensions. Int. J. Manag. Rev. 2016, 18, 133–159. [Google Scholar] [CrossRef]
- Li, X.; Quan, R.; Stoian, M.C.; Azar, G. Do MNEs from developed and emerging economies differ in their location choice of FDI? A 36-year review. Int. Bus. Rev. 2018, 27, 1089–1103. [Google Scholar] [CrossRef]
- Bonelli, R. A note on foreign direct investment and industrial competitiveness in Brazil. Oxf. Dev. Stud. 1999, 27, 305–327. [Google Scholar] [CrossRef]
- Pérez-Moreno, S.; Rodríguez, B.; Luque, M. Assessing global competitiveness under multi-criteria perspective. Econ. Model. 2016, 53, 398–408. [Google Scholar] [CrossRef]
- Buscema, M.; Sacco, P.L.; Ferilli, G. Multidimensional similarities at a global scale: An approach to mapping open society orientations. Soc. Indic. Res. 2016, 128, 1239–1258. [Google Scholar] [CrossRef]
- Bucher, S. The Global Competitiveness Index as an indicator of sustainable development. Her. Russ. Acad. Sci. 2018, 88, 44–57. [Google Scholar] [CrossRef]
- Dalvi-Esfahani, M.; Niknafs, A.; Kuss, D.J.; Nilashi, M.; Afrough, S. Social media addiction: Applying the DEMATEL approach. Telemat. Inform. 2019, 43, 101250. [Google Scholar] [CrossRef]
- Nilashi, M.; Samad, S.; Manaf, A.A.; Ahmadi, H.; Rashid, T.A.; Munshi, A.; Almukadi, W.; Ibrahim, O.; Ahmed, O.H. Factors influencing medical tourism adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS approach. Comput. Ind. Eng. 2019, 137, 106005. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Xue, H. Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. J. Clean. Prod. 2019, 226, 949–958. [Google Scholar] [CrossRef]
- Kaur, J.; Sidhu, R.; Awasthi, A.; Chauhan, S.; Goyal, S. A DEMATEL based approach for investigating barriers in green supply chain management in Canadian manufacturing firms. Int. J. Prod. Res. 2018, 56, 312–332. [Google Scholar] [CrossRef]
- Li, Y.; Mathiyazhagan, K. Application of DEMATEL approach to identify the influential indicators towards sustainable supply chain adoption in the auto components manufacturing sector. J. Clean. Prod. 2018, 172, 2931–2941. [Google Scholar] [CrossRef]
- Snyder-Halpern, R. Indicators of organizational readiness for clinical information technology/systems innovation: A Delphi study. Int. J. Med. Inform. 2001, 63, 179–204. [Google Scholar] [CrossRef]
- Schmajuk, G.; Hoyer, B.F.; Aringer, M.; Johnson, S.R.; Daikh, D.I.; Dörner, T. Multicenter Delphi exercise to identify important key items for classifying systemic lupus erythematosus. Arthritis Care Res. 2018, 70, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Shariff, N. Utilizing the Delphi survey approach: A review. J. Nurs. Care 2015, 4, 246. [Google Scholar] [CrossRef]
- Ren, Q.; Shen, X.; Shen, H.; Hsu, W.L.; Duan, S. Exploring the Key Indexes of Environmental Conservation Zones using Fuzzy Delphi Method. In Proceedings of the 3rd Eurasian Conference on Educational Innovation 2020 (ECEI 2020), Hanoi, Vietnam, 5–7 February 2020. [Google Scholar]
- Du, Y.W.; Li, X.X. Hierarchical DEMATEL method for complex systems. Expert Syst. Appl. 2021, 167, 113871. [Google Scholar] [CrossRef]
- Velázquez, A.I.U.; Coello, D.A.G.; Garlobo, E.R.; Vinueza, C.E. Neutrosophic Iadov tecnique for assessing the proposal of standardization of the beef cutting for roasting in Patate canton, Ecuador. In Neutrosophic Sets and Systems, Book Series, Vol. 34, 2020. An International Book Series in Information Science and Engineering. Special Issue: Social Neutrosophy in Latin America; Florentin, S., Mohamed, A.B., Maikel, L.V., Eds.; Infinite Study: West Conshohocken, PA, USA, 2020; Volume 34. [Google Scholar]
- Mavi, R.K.; Standing, C. Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach. J. Clean. Prod. 2018, 194, 751–765. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozkan-Ozen, Y.D. Analyzing Workforce 4.0 in the Fourth Industrial Revolution and proposing a road map from operations management perspective with fuzzy DEMATEL. J. Enterp. Inf. Manag. 2018, 31, 891–907. [Google Scholar] [CrossRef]
- Abdullah, L.; Zulkifli, N.; Liao, H.; Herrera-Viedma, E.; Al-Barakati, A. An interval-valued intuitionistic fuzzy DEMATEL method combined with Choquet integral for sustainable solid waste management. Eng. Appl. Artif. Intell. 2019, 82, 207–215. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; Von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J. Med. Chem. 2020, 63, 4562–4578. [Google Scholar] [CrossRef]
- Ocampo, L.; Yamagishi, K. Modeling the lockdown relaxation protocols of the Philippine government in response to the COVID-19 pandemic: An intuitionistic fuzzy DEMATEL analysis. Socio Econ. Plan. Sci. 2020, 72, 100911. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y. Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Broumi, S.; Bakali, A.; Bahnasse, A. Neutrosophic Sets: An Overview; Infinite Study: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Yue, C. Entropy-based weights on decision makers in group decision-making setting with hybrid preference representations. Appl. Soft Comput. 2017, 60, 737–749. [Google Scholar] [CrossRef]
- Koksalmis, E.; Kabak, Ö. Deriving decision makers’ weights in group decision making: An overview of objective methods. Inf. Fusion 2019, 49, 146–160. [Google Scholar] [CrossRef]
- Feng, C.; Ma, R. Identification of the factors that influence service innovation in manufacturing enterprises by using the fuzzy DEMATEL method. J. Clean. Prod. 2020, 253, 120002. [Google Scholar] [CrossRef]
- The Global Competitiveness Report. Available online: http://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2020.pdf (accessed on 5 April 2021).
- Schwab, K. The Global Competitiveness Report 2018. World Econ. Forum 2018, 671. Available online: http://reports.weforum.org/global-competitiveness-report-2018/chapter-3-benchmarking-competitiveness-in-the-fourth-industrial-revolution-introducing-the-global-competitiveness-index-4-0/ (accessed on 5 April 2021).
- Hard, N.; Lee, P.; Dockett, S. Mapping the policy landscape of Australian early childhood education policy through document analysis. Australas. J. Early Child. 2018, 43, 4–13. [Google Scholar] [CrossRef]
- Muijeen, K.; Kongvattananon, P.; Somprasert, C. The key success factors in focus group discussions with the elderly for novice researchers: A review. J. Health Res. 2020, 34, 359–371. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; Milstein, A.; Jiménez-Rodríguez, A.; Mazuelos, N.; Medialdea, M.; Serrano, L. Multivariate factor analysis reveals the key role of management in integrated multitrophic aquaculture of veta la Palma (Spain). Aquaculture 2018, 495, 484–495. [Google Scholar] [CrossRef]
- Skowrońska-Szmer, A.; Kowalska-Pyzalska, A. Key factors of development of electromobility among microentrepreneurs: A case study from Poland. Energies 2021, 14, 764. [Google Scholar] [CrossRef]
- Woźny, A.; Saja, P.; Dobosz, M.; Kucęba, R. Occupational health and safety management with the use of brainstorming method. Prod. Eng. Arch. 2017, 17, 19–24. [Google Scholar] [CrossRef]
- Modabberniya, Y.; Vazifehdust, H.; Abdolvand, M.A. Providing a model of key factors affecting behavioral intentions of using e-banking services in Tejarat Bank. Iran. J. Oper. Res. 2020, 11. Available online: http://iors.ir/journal/article-1-666-en.html&sw=Ease+of+Use (accessed on 7 June 2020).
- Mellett, C.; O’Donovan, A.; Hayes, C. The development of outcome key performance indicators for systemic anti-cancer therapy using a modified Delphi method. Eur. J. Cancer Care 2020, 29, 13240. [Google Scholar] [CrossRef]
- Qu, G.B.; Zhao, T.Y.; Zhu, B.W.; Tzeng, G.H.; Huang, S.L. Use of a modified DANP-mV model to improve quality of life in rural residents: The empirical case of Xingshisi village, China. Int. J. Environ. Res. Public Health 2019, 16, 153. [Google Scholar] [CrossRef] [Green Version]
- Guan, L.; Abbasi, A.; Ryan, M.J. Analyzing green building project risk interdependencies using Interpretive Structural Modeling. J. Clean. Prod. 2020, 256, 120372. [Google Scholar] [CrossRef]
- Papageorgiou, K.; Singh, P.K.; Papageorgiou, E.; Chudasama, H.; Bochtis, D.; Stamoulis, G. Fuzzy cognitive map-based sustainable socio-economic development planning for rural communities. Sustainability 2020, 12, 305. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, C.; Kim, J.; Chi, S. Quantifying the dynamic effects of smart city development enablers using structural equation modeling. Sustain. Cities Soc. 2020, 53, 101916. [Google Scholar] [CrossRef]
- Handa, B.S.; Li, X.; Aras, K.K.; Qureshi, N.A.; Mann, I.; Chowdhury, R.A.; Whinnett, Z.I.; Linton, N.W.; Lim, P.B.; Kanagaratnam, P.; et al. Granger causality–based analysis for classification of fibrillation mechanisms and localization of rotational drivers. Circ. Arrhythm. Electrophysiol. 2020, 13, 008237. [Google Scholar] [CrossRef]
- Huynh, T.L.D. The effect of uncertainty on the precious metals market: New insights from Transfer Entropy and Neural Network VAR. Resour. Policy 2020, 66, 101623. [Google Scholar] [CrossRef]
- Abolhabib, M.; Sharifi, F.; Dehaghani, A.R. A hesitant fuzzy DANP for Identifying and prioritizing effects and challenges of green roof on mental health in developing countries. J. Adv. Pharm. Educ. Res. 2020, 10, 125–136. [Google Scholar]
- Chen, K.H.; Yien, J.M.; Chiang, C.H.; Tsai, P.C.; Tsai, F.S. Identifying key sources of city air quality: A hybrid MCDM model and improvement strategies. Appl. Sci. 2019, 9, 1414. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.W.; Liou, J.J.; Tang, W.; Tzeng, G.H. Location Selection of a Manufacturing Facility from the Perspective of Supply Chain Sustainability. Symmetry 2020, 12, 1418. [Google Scholar] [CrossRef]
- Singh, C.; Singh, D.; Khamba, J.S. Analyzing barriers of Green Lean practices in manufacturing industries by DEMATEL approach. J. Manuf. Technol. Manag. 2020, 32, 176–198. [Google Scholar] [CrossRef]
- Becerra Arévalo, N.P.; Calles Carrasco, M.F.; Toasa Espinoza, J.L.; Velasteguí Córdova, M. Neutrosophic AHP for the prioritization of requirements for a computerized facial recognition system. Neutrosophic Sets Syst. 2020, 34, 158–168. [Google Scholar]
- Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Lin, P.J.; Shiue, Y.C.; Tzeng, G.H.; Huang, S.L. Developing a sustainable long-term ageing health care system using the DANP-mV model: Empirical case of Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 1349. [Google Scholar] [CrossRef] [Green Version]
- Tsai, P.H. Strategic evaluation criteria to assess competitiveness of the service industry in Taiwan. J. Policy Model. 2020, 42, 1287–1309. [Google Scholar] [CrossRef]
- Tsai, P.H.; Lin, G.Y.; Zheng, Y.L.; Chen, Y.C.; Chen, P.Z.; Su, Z.C. Exploring the effect of Starbucks’ green marketing on consumers’ purchase decisions from consumers’ perspective. J. Retail. Consum. Serv. 2020, 56, 102162. [Google Scholar] [CrossRef]
- Zhu, B.W.; Zhang, J.R.; Tzeng, G.H.; Huang, S.L.; Xiong, L. Public open space development for elderly people by using the DANP-V model to establish continuous improvement strategies towards a sustainable and healthy aging society. Sustainability 2017, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.R.; Rani, P.; Pandey, K.; Mardani, A.; Streimikis, J.; Streimikiene, D.; Alrasheedi, M. Novel multi-criteria intuitionistic fuzzy SWARA–COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability 2020, 12, 4155. [Google Scholar] [CrossRef]
- Kilic, H.S.; Yalcin, A.S. Comparison of municipalities considering environmental sustainability via neutrosophic DEMATEL based TOPSIS. Socio Econ. Plan. Sci. 2020, 75, 100827. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Podvezko, V. Integrated determination of objective criteria weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Biswas, T.K.; Chaki, S.; Das, M.C. MCDM technique application to the selection of an Indian institute of technology. Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 65–76. [Google Scholar] [CrossRef]
- Peng, K.H.; Tzeng, G.H. Exploring heritage tourism performance improvement for making sustainable development strategies using the hybrid-modified MADM model. Curr. Issues Tour. 2019, 22, 921–947. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, N.; Chang, C.; Wang, D.; Yang, S.; Ma, S. A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy 2018, 165, 1085–1096. [Google Scholar] [CrossRef]
- Altig, D.; Baker, S.; Barrero, J.M.; Bloom, N.; Bunn, P.; Chen, S.; Davis, S.J.; Leather, J.; Meyer, B.; Mihaylov, E.; et al. Economic uncertainty before and during the COVID-19 pandemic. J. Public Econ. 2020, 191, 104274. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis; American Research Press: Santa Fe, NM, USA, 1998. [Google Scholar]
- Awang, A.; Aizam, N.A.H.; Abdullah, L. An integrated decision-making method based on neutrosophic numbers for investigating factors of coastal erosion. Symmetry 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.W.; Liou, J.J. A novel multiple-criteria decision-making-based FMEA model for risk assessment. Appl. Soft Comput. 2018, 73, 684–696. [Google Scholar] [CrossRef]
- Dzeng, R.J.; Wen, K.S. Evaluating project teaming strategies for construction of Taipei 101 using resource-based theory. Int. J. Proj. Manag. 2005, 23, 483–491. [Google Scholar] [CrossRef]
- Gupta, H.; Barua, M.K. Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Clean. Prod. 2017, 152, 242–258. [Google Scholar] [CrossRef]
- Yahia, Y.E.; Liu, H.; Khan, M.A.; Shah, S.S.H.; Islam, M.A. The impact of foreign direct investment on domestic investment: Evidence from Sudan. Int. J. Econ. Financ. Issues 2018, 8, 1–10. [Google Scholar]
- Subramanian, A.; Satyanath, S. What Determines Long-Run Macroeconomic Stability? Democratic Institutions; International Monetary Fund: Washington, DC, USA, 2004. [Google Scholar]
No | Pillar | Indicators |
---|---|---|
P1 | Institutions | Security, social capital, checks and balances, public-sector performance, transparency, property rights, corporate governance, future orientation of government. |
P2 | Infrastructure | Transport infrastructure, utility infrastructure. |
P3 | ICT adoption | Mobile-cellular telephone, mobile-broad, fixed-broadband internet, fiber internet, internet users. |
P4 | Macroeconomic stability | Inflation, debt dynamics. |
P5 | Health | Healthy life expectancy |
P6 | Skills | Current workforce, future workforce. |
P7 | Product market | Domestic market competition, trade openness. |
P8 | Labor market | Flexibility, meritocracy and incentivization. |
P9 | Financial system | Depth, stability |
P10 | Market size | Gross domestic product, imports of goods and services. |
P11 | Business dynamism | Administrative requirement, entrepreneurial culture. |
P12 | Innovation capability | Diversity and collaboration, research and development, commercialization. |
Code | Gender | Organization | Age | Title | Education | Seniority |
---|---|---|---|---|---|---|
1 | M | Education | 55 | Professor | PHD | 25 |
2 | M | Government | 56 | President | PHD | 25 |
3 | M | Foundation | 60 | Associate Dean | PHD | 30 |
4 | M | Company | 58 | Chairman of the Board | PHD | 25 |
5 | F | Guild | 62 | Union President | MS | 30 |
CODE | Indicator | L | M | U | o | >8.384 | No |
---|---|---|---|---|---|---|---|
I1 | Security | 8 | 8.618 | 10 | 8.873 | KEEP | C1 |
I2 | Social capital | 3 | 5.769 | 8 | 5.590 | Delete | |
I3 | Checks and balances | 6 | 7.560 | 9 | 7.520 | Delete | |
I4 | Public-sector performance | 4 | 6.868 | 9 | 6.623 | Delete | |
I5 | Transparency | 6 | 7.862 | 9 | 7.621 | Delete | |
I6 | Property rights | 7 | 8.243 | 10 | 8.414 | KEEP | C2 |
I7 | Corporate governance | 5 | 5.944 | 7 | 5.981 | Delete | |
I8 | Future orientation of government | 6 | 7.489 | 10 | 7.830 | Delete | |
I9 | Transport infrastructure | 8 | 8.618 | 10 | 8.873 | KEEP | C3 |
I10 | Utility infrastructure | 7 | 8.243 | 10 | 8.414 | KEEP | C4 |
I11 | ICT adoption | 6 | 6.952 | 8 | 6.984 | Delete | |
I12 | Macroeconomic stability | 8 | 8.963 | 10 | 8.988 | KEEP | C5 |
I13 | Health | 8 | 8.320 | 9 | 8.440 | KEEP | C6 |
I14 | Current workforce | 8 | 8.000 | 8 | 8.000 | Delete | |
I15 | Future workforce | 5 | 6.804 | 9 | 6.935 | Delete | |
I16 | Domestic market competition | 7 | 7.884 | 10 | 8.295 | Delete | |
I17 | Trade openness | 6 | 7.230 | 9 | 7.410 | Delete | |
I18 | Flexibility | 7 | 7.958 | 9 | 7.986 | Delete | |
I19 | Meritocracy and incentivization | 5 | 6.257 | 7 | 6.086 | Delete | |
I20 | Depth | 5 | 6.542 | 8 | 6.514 | Delete | |
I21 | Stability | 6 | 6.952 | 8 | 6.984 | Delete | |
I22 | Administrative requirements | 6 | 6.316 | 7 | 6.439 | Delete | |
I23 | Entrepreneurial culture | 5 | 5.848 | 8 | 6.283 | Delete | |
I24 | Diversity and collaboration | 5 | 6.463 | 9 | 6.821 | Delete | |
I25 | Research and development | 7 | 7.958 | 9 | 7.986 | Delete | |
I26 | Commercialization | 7 | 8.243 | 10 | 8.414 | KEEP | C7 |
CODE | Criteria | Definition |
---|---|---|
C1 | Security | Refers to the local organized crime, homicide rate, terrorism incident, and reliability of police service |
C2 | Property rights | Refers to property rights, intellectual property protection, and quality of land administration |
C3 | Transport infrastructure | The quality of the local road network and infrastructure, railroad density and efficiency of train services, connectivity of airport and liner shipping, and efficiency of air transport services and seaport services. |
C4 | Utility infrastructure | Electricity supply quality and reliability of water supply |
C5 | Macroeconomic stability | Refers to inflation and debt dynamics |
C6 | Health | Healthy life expectancy |
C7 | Commercialization | Buyer sophistication and trademark applications |
Crisp | C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
---|---|---|---|---|---|---|---|---|
Exp1 | C1 | 0 (0, 0, 0) | 4 (0.9, 0.2, 0.1) | 4 (0.9, 0.2, 0.1) | 4 (0.8, 0.3, 0.2) | 4 (0.8, 0.3, 0.2) | 3 (0.7, 0.3, 0.3) | 3 (0.8, 0.3, 0.2) |
C2 | 2 (0.7, 0.2, 0.3) | 0 (0, 0, 0) | 0 (0.8, 0.3, 0.2) | 3 (0.8, 0.2, 0.2) | 3 (0.8, 0.2, 0.2) | 0 (0.8, 0.3, 0.2) | 2 (0.8, 0.2, 0.2) | |
C3 | 3 (0.8, 0.2, 0.2) | 0 (0.7, 0.3, 0.3) | 0 (0, 0, 0) | 2 (0.8, 0.2, 0.2) | 3 (0.8, 0.2, 0.2) | 0 (0.7, 0.3, 0.3) | 3 (0.8, 0.2, 0.2) | |
C4 | 1 (0.8, 0.2, 0.2) | 3 (0.9, 0.1, 0.1) | 3 (0.9, 0.1, 0.1) | 0 (0, 0, 0) | 4 (0.9, 0.1, 0.1) | 1 (0.8, 0.2, 0.2) | 3 (0.9, 0.1, 0.1) | |
C5 | 3 (0.9, 0.1, 0.1) | 3 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 0 (0, 0, 0) | 1 (0.9, 0.1, 0.1) | 3 (0.9, 0.1, 0.1) | |
C6 | 1 (0.8, 0.2, 0.2) | 1 (0.8, 0.2, 0.2) | 1 (0.8, 0.2, 0.2) | 0 (0.7, 0.2, 0.3) | 2 (0.8, 0.2, 0.2) | 0 (0, 0, 0) | 1 (0.8, 0.2, 0.2) | |
C7 | 2 (0.8, 0.2, 0.2) | 1 (0.7, 0.2, 0.3) | 3 (0.8, 0.1, 0.2) | 3 (0.8, 0.1, 0.2) | 3 (0.8, 0.1, 0.2) | 0 (0.7, 0.2, 0.3) | 0 (0, 0, 0) | |
Exp2 | C1 | 0 (0, 0, 0) | 4 (0.9, 0.2, 0.1) | 4 (0.9, 0.1, 0.1) | 2 (0.9, 0.3, 0.1) | 2 (0.9, 0.3, 0.1) | 4 (0.9, 0.3, 0.1) | 4 (0.9, 0.3, 0.1) |
C2 | 4 (0.9, 0.1, 0.1) | 0 (0, 0, 0) | 2 (0.7, 0.1, 0.3) | 2 (0.9, 0.1, 0.1) | 2 (0.9, 0.1, 0.1) | 2 (0.7, 0.1, 0.3) | 2 (0.9, 0.1, 0.1) | |
C3 | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 0 (0, 0, 0) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 2 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | |
C4 | 4 (0.9, 0.1, 0.1) | 2 (0.8, 0.1, 0.2) | 2 (0.8, 0.1, 0.2) | 0 (0, 0, 0) | 2 (0.8, 0.1, 0.2) | 4 (0.9, 0.1, 0.1) | 2 (0.8, 0.1, 0.2) | |
C5 | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 0 (0, 0, 0) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | |
C6 | 4 (0.9, 0.1, 0.1) | 3 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 4 (0.9, 0.1, 0.1) | 0 (0, 0, 0) | 4 (0.9, 0.1, 0.1) | |
C7 | 2 (0.8, 0.1, 0.2) | 4 (0.8, 0.1, 0.2) | 4 (0.8, 0.1, 0.2) | 2 (0.8, 0.1, 0.2) | 4 (0.8, 0.1, 0.2) | 4 (0.8, 0.1, 0.2) | 0 (0, 0, 0) | |
Expi | ⁝ | … | … | … | … | … | … | … |
Expk | ⁝ | … | … | … | … | … | … | … |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | ||
---|---|---|---|---|---|---|---|---|
Exp1 | C1 | (0, 0, 0) | (0.9, 0.2, 0.1) | (0.9, 0.2, 0.1) | (0.8, 0.3, 0.2) | (0.8, 0.3, 0.2) | (0.5, 0.2, 0.2) | (0.6, 0.2, 0.2) |
C2 | (0.4, 0.1, 0.2) | (0, 0, 0) | (0, 0, 0) | (0.6, 0.2, 0.2) | (0.6, 0.2, 0.2) | (0, 0, 0) | (0.4, 0.1, 0.1) | |
C3 | (0.6, 0.2, 0.2) | (0, 0, 0) | (0, 0, 0) | (0.4, 0.1, 0.1) | (0.6, 0.2, 0.2) | (0, 0, 0) | (0.6, 0.2, 0.2) | |
C4 | (0.2, 0.1, 0.1) | (0.7, 0.1, 0.1) | (0.7, 0.1, 0.1) | (0, 0, 0) | (0.9, 0.1, 0.1) | (0.2, 0.1, 0.1) | (0.7, 0.1, 0.1) | |
C5 | (0.7, 0.1, 0.1) | (0.7, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0, 0, 0) | (0.2, 0, 0) | (0.7, 0.1, 0.1) | |
C6 | (0.2, 0.1, 0.1) | (0.2, 0.1, 0.1) | (0.2, 0.1, 0.1) | (0, 0, 0) | (0.4, 0.1, 0.1) | (0, 0, 0) | (0.2, 0.1, 0.1) | |
C7 | (0.4, 0.1, 0.1) | (0.2, 0.1, 0.1) | (0.6, 0.1, 0.2) | (0.6, 0.1, 0.2) | (0.6, 0.1, 0.2) | (0, 0, 0) | (0, 0, 0) | |
Exp2 | C1 | (0, 0, 0) | (0.9, 0.2, 0.1) | (0.9, 0.1, 0.1) | (0.5, 0.2, 0.1) | (0.5, 0.2, 0.1) | (0.9, 0.3, 0.1) | (0.9, 0.3, 0.1) |
C2 | (0.9, 0.1, 0.1) | (0, 0, 0) | (0.4, 0.1, 0.2) | (0.5, 0.1, 0.1) | (0.5, 0.1, 0.1) | (0.4, 0.1, 0.2) | (0.5, 0.1, 0.1) | |
C3 | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0, 0, 0) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.5, 0.1, 0.1) | (0.9, 0.1, 0.1) | |
C4 | (0.9, 0.1, 0.1) | (0.4, 0.1, 0.1) | (0.4, 0.1, 0.1) | (0, 0, 0) | (0.4, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.4, 0.1, 0.1) | |
C5 | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0, 0, 0) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | |
C6 | (0.9, 0.1, 0.1) | (0.7, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0, 0, 0) | (0.9, 0.1, 0.1) | |
C7 | (0.4, 0.1, 0.1) | (0.8, 0.1, 0.2) | (0.8, 0.1, 0.2) | (0.4, 0.1, 0.1) | (0.8, 0.1, 0.2) | (0.8, 0.1, 0.2) | (0, 0, 0) | |
Expi | ⁝ | … | … | … | … | … | … | … |
Expk | ⁝ | … | … | … | … | … | … | … |
C1 → C2 | C1 → C3 | C1 → C… | C1 → C7 | C2 → C1 | C2 → C2 | C2 → C… | C2 → C7 | C… → C… | C7 → C7 | ei | ei | w | Rank | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp1 | 0 | 4 | … | 3 | 2 | 0 | … | 2 | … | 0 | 0.894 | 0.106 | 0.283 | 2 |
Exp2 | 0 | 4 | … | 4 | 4 | 0 | … | 2 | … | 0 | 0.944 | 0.056 | 0.148 | 3 |
Exp3 | 0 | 4 | … | 4 | 3 | 0 | … | 3 | … | 0 | 0.947 | 0.053 | 0.140 | 5 |
Exp4 | 0 | 4 | … | 3 | 3 | 0 | … | 3 | … | 0 | 0.946 | 0.054 | 0.143 | 4 |
Exp5 | 0 | 3 | … | 1 | 3 | 0 | … | 1 | … | 0 | 0.892 | 0.108 | 0.286 | 1 |
w | DE | C1 | C2 | C3 | C4 | C5 | C6 | C7 | w × DE | C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp1 | 0.283 | C1 | 0.423 | 0.859 | 0.859 | 0.762 | 0.762 | 0.67 | 0.721 | C1 | 0.119 | 0.243 | 0.243 | 0.215 | 0.215 | 0.189 | 0.204 |
C2 | 0.611 | 0.423 | 0.423 | 0.739 | 0.739 | 0.423 | 0.644 | C2 | 0.173 | 0.119 | 0.119 | 0.209 | 0.209 | 0.119 | 0.182 | ||
C3 | 0.739 | 0.423 | 0.423 | 0.644 | 0.739 | 0.423 | 0.739 | C3 | 0.209 | 0.119 | 0.119 | 0.182 | 0.209 | 0.119 | 0.209 | ||
C4 | 0.536 | 0.803 | 0.803 | 0.423 | 0.9 | 0.536 | 0.803 | C4 | 0.152 | 0.227 | 0.227 | 0.119 | 0.254 | 0.152 | 0.227 | ||
C5 | 0.803 | 0.803 | 0.9 | 0.9 | 0.423 | 0.552 | 0.803 | C5 | 0.227 | 0.227 | 0.254 | 0.254 | 0.119 | 0.156 | 0.227 | ||
C6 | 0.536 | 0.536 | 0.536 | 0.423 | 0.644 | 0.423 | 0.536 | C6 | 0.152 | 0.152 | 0.152 | 0.119 | 0.182 | 0.119 | 0.152 | ||
C7 | 0.644 | 0.521 | 0.75 | 0.75 | 0.75 | 0.423 | 0.423 | C7 | 0.182 | 0.147 | 0.212 | 0.212 | 0.212 | 0.119 | 0.119 | ||
Exp2 | 0.148 | C1 | 0.423 | 0.859 | 0.9 | 0.67 | 0.67 | 0.809 | 0.809 | C1 | 0.063 | 0.127 | 0.133 | 0.099 | 0.099 | 0.12 | 0.12 |
C2 | 0.9 | 0.423 | 0.614 | 0.68 | 0.68 | 0.614 | 0.68 | C2 | 0.133 | 0.063 | 0.091 | 0.101 | 0.101 | 0.091 | 0.101 | ||
C3 | 0.9 | 0.9 | 0.423 | 0.9 | 0.9 | 0.68 | 0.9 | C3 | 0.133 | 0.133 | 0.063 | 0.133 | 0.133 | 0.101 | 0.133 | ||
C4 | 0.9 | 0.648 | 0.648 | 0.423 | 0.648 | 0.9 | 0.648 | C4 | 0.133 | 0.096 | 0.096 | 0.063 | 0.096 | 0.133 | 0.096 | ||
C5 | 0.9 | 0.9 | 0.9 | 0.9 | 0.423 | 0.9 | 0.9 | C5 | 0.133 | 0.133 | 0.133 | 0.133 | 0.063 | 0.133 | 0.133 | ||
C6 | 0.9 | 0.803 | 0.9 | 0.9 | 0.9 | 0.423 | 0.9 | C6 | 0.133 | 0.119 | 0.133 | 0.133 | 0.133 | 0.063 | 0.133 | ||
C7 | 0.648 | 0.827 | 0.827 | 0.648 | 0.827 | 0.827 | 0.423 | C7 | 0.096 | 0.122 | 0.122 | 0.096 | 0.122 | 0.122 | 0.063 | ||
Expj | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
Expk | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
A | C1 | C2 | C3 | C4 | C5 | C6 | C7 | T | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.423 | 0.844 | 0.769 | 0.758 | 0.687 | 0.632 | 0.697 | C1 | 2.018 | 2.028 | 1.998 | 2.043 | 1.952 | 1.729 | 1.935 |
C2 | 0.745 | 0.423 | 0.591 | 0.729 | 0.663 | 0.522 | 0.645 | C2 | 1.897 | 1.774 | 1.792 | 1.859 | 1.776 | 1.558 | 1.756 |
C3 | 0.778 | 0.589 | 0.423 | 0.741 | 0.678 | 0.578 | 0.722 | C3 | 1.977 | 1.878 | 1.830 | 1.934 | 1.849 | 1.630 | 1.840 |
C4 | 0.714 | 0.693 | 0.725 | 0.423 | 0.735 | 0.640 | 0.677 | C4 | 2.001 | 1.931 | 1.921 | 1.908 | 1.892 | 1.670 | 1.864 |
C5 | 0.807 | 0.754 | 0.764 | 0.782 | 0.423 | 0.652 | 0.768 | C5 | 2.148 | 2.068 | 2.052 | 2.103 | 1.955 | 1.780 | 2.001 |
C6 | 0.734 | 0.697 | 0.652 | 0.675 | 0.668 | 0.423 | 0.592 | C6 | 1.940 | 1.870 | 1.845 | 1.893 | 1.819 | 1.574 | 1.788 |
C7 | 0.696 | 0.706 | 0.736 | 0.678 | 0.727 | 0.581 | 0.423 | C7 | 1.974 | 1.911 | 1.900 | 1.934 | 1.868 | 1.640 | 1.794 |
Criteria | r | c | x | Rank | y | Group |
---|---|---|---|---|---|---|
C1 | 13.704 | 13.955 | 27.658 | 1 | −0.251 | E |
C2 | 12.412 | 13.460 | 25.872 | 6 | −1.048 | E |
C3 | 12.937 | 13.337 | 26.273 | 4 | −0.400 | E |
C4 | 13.187 | 13.675 | 26.863 | 3 | −0.488 | E |
C5 | 14.107 | 13.110 | 27.217 | 2 | 0.997 | C |
C6 | 12.728 | 11.580 | 24.308 | 7 | 1.148 | C |
C7 | 13.021 | 12.978 | 25.999 | 5 | 0.043 | C |
Original DEMATEL | Novel Design Practice | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | c | x | Rank | y | Group | r | c | x | Rank | y | Group | |
C1 | 7.137 | 7.091 | 14.228 | 1 | 0.046 | C | 13.704 | 13.955 | 27.658 | 1 | −0.251 | E |
C2 | 5.433 | 6.465 | 11.898 | 6 | (1.032) | E | 12.412 | 13.460 | 25.872 | 6 | −1.048 | E |
C3 | 6.091 | 6.346 | 12.438 | 5 | (0.255) | E | 12.937 | 13.337 | 26.273 | 4 | −0.400 | E |
C4 | 6.117 | 6.671 | 12.789 | 3 | (0.554) | E | 13.187 | 13.675 | 26.863 | 3 | −0.488 | E |
C5 | 7.063 | 6.300 | 13.363 | 2 | 0.763 | C | 14.107 | 13.110 | 27.217 | 2 | 0.997 | C |
C6 | 5.906 | 5.038 | 10.944 | 7 | 0.868 | C | 12.728 | 11.580 | 24.308 | 7 | 1.148 | C |
C7 | 6.433 | 6.268 | 12.701 | 4 | 0.165 | C | 13.021 | 12.978 | 25.999 | 5 | 0.043 | C |
Situation | Exp1 | Exp2 | Exp3 | Exp4 | Exp5 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETP | 0.283 | 0.148 | 0.140 | 0.143 | 0.286 | E | E | E | E | C | C | C |
Run1 | 0.356 | 0.187 | 0.177 | 0.180 | 0.100 | C | E | E | E | C | C | E |
Run2 | 0.317 | 0.166 | 0.157 | 0.160 | 0.200 | C | E | E | E | C | C | E |
Run3 | 0.277 | 0.145 | 0.138 | 0.140 | 0.300 | E | E | E | E | C | C | C |
Run4 | 0.238 | 0.124 | 0.118 | 0.120 | 0.400 | E | E | E | E | C | C | C |
Run5 | 0.198 | 0.104 | 0.098 | 0.100 | 0.500 | E | E | E | E | C | C | C |
Run6 | 0.158 | 0.083 | 0.079 | 0.080 | 0.600 | E | E | E | E | C | C | C |
Run7 | 0.119 | 0.062 | 0.059 | 0.060 | 0.700 | E | E | E | E | C | C | C |
Run8 | 0.079 | 0.041 | 0.039 | 0.040 | 0.800 | E | E | E | E | C | C | C |
Run9 | 0.040 | 0.021 | 0.020 | 0.020 | 0.900 | E | E | E | E | C | C | C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-W.; Liou, J.J.H.; Cheng, S.-H.; Tang, W.; Ma, J.C.Y.; Tzeng, G.-H. The Key Success Factors for Attracting Foreign Investment in the Post-Epidemic Era. Axioms 2021, 10, 140. https://doi.org/10.3390/axioms10030140
Huang S-W, Liou JJH, Cheng S-H, Tang W, Ma JCY, Tzeng G-H. The Key Success Factors for Attracting Foreign Investment in the Post-Epidemic Era. Axioms. 2021; 10(3):140. https://doi.org/10.3390/axioms10030140
Chicago/Turabian StyleHuang, Sun-Weng, James J. H. Liou, Shih-Hsiung Cheng, William Tang, Jessica C. Y. Ma, and Gwo-Hshiung Tzeng. 2021. "The Key Success Factors for Attracting Foreign Investment in the Post-Epidemic Era" Axioms 10, no. 3: 140. https://doi.org/10.3390/axioms10030140
APA StyleHuang, S. -W., Liou, J. J. H., Cheng, S. -H., Tang, W., Ma, J. C. Y., & Tzeng, G. -H. (2021). The Key Success Factors for Attracting Foreign Investment in the Post-Epidemic Era. Axioms, 10(3), 140. https://doi.org/10.3390/axioms10030140