Rough Approximation Operators on a Complete Orthomodular Lattice
Abstract
:1. Introduction
2. Preliminaries
2.1. Orthomodular Lattices
- (1)
- , ;
- (2)
- ;
- (3)
- ;
- (4)
- .
2.2. Rough Approximations on a COL
3. Relation among the Distributive Law, Rough Approximations and Lattice-Valued Relations
- (1)
- L satisfies DL.
- (2)
- .
- (3)
- .
- (1)
- R is serial, i.e., for all .
- (2)
- , for any .
- (3)
- , for any .
- (1)
- L satisfies DL.
- (2)
- R is transitive, i.e., holds for all .
- (3)
- .
- (1)
- L satisfies DL.
- (2)
- R is transitive.
- (3)
- .
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COL | complete orthomodular lattice |
OL | orthomodular law |
DL | distributive law |
LAO | lower approximation operator |
UAO | upper approximation operator |
iff | if and only if |
References
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Rauszer, C. An equivalence between theory of functional dependence and a fragment of intuitionistic logic. Bull. Pol. Acad. Sci. Math. 1985, 33, 571–579. [Google Scholar]
- Vakarelov, D. A modal logic for similarity relations in Pawlak knowledge representation systems. Fundam. Inform. 1991, 15, 61–79. [Google Scholar] [CrossRef]
- Vakarelov, D. Modal logics for knowledge representation systems. Theor. Comput. Sci. 1991, 90, 433–456. [Google Scholar]
- Yao, Y.Y. Constructive and algebraic methods of the theory of rough sets. Inf. Sci. 1998, 109, 21–47. [Google Scholar] [CrossRef]
- Pei, Z.; Pei, D.; Zheng, L. Topology vs. generalized rough sets. Int. J. Approx. Reason. 2011, 52, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, Z.; Skowron, A. Rough sets and boolean reasoning. Inf. Sci. 2007, 177, 41–73. [Google Scholar] [CrossRef] [Green Version]
- Qi, G.; Liu, W. Rough operations on Boolean algebras. Inf. Sci. 2005, 173, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Hua, X. Fuzzy rough set based on lattice effect algebra. J. Intell. Fuzzy Syst. 2019, 36, 29–36. [Google Scholar] [CrossRef]
- Radzikowska, A.M.; Kerre, E.E. Fuzzy rough sets based on residuated lattices. Trans. Rough Sets Lect. Notes Comput. Sci. 2004, 3135, 278–296. [Google Scholar]
- Bao, Y.; Yang, H.; She, Y. Using one axiom to characterize L-fuzzy rough approximation operators based on residuated lattices. Fuzzy Sets Syst. 2018, 336, 87–115. [Google Scholar] [CrossRef]
- Yin, Y.Q.; Huang, X.K. Fuzzy Roughness in hyperrings based on a complete residuated lattice. Int. J. Fuzzy Syst. 2010, 13, 185–194. [Google Scholar]
- Yin, Y.Q.; Zhan, J.M.; Corsini, P. Fuzzy roughness of n-ary hypergroups based on a complete residuated lattice. Neural Comput. Appl. 2011, 20, 41–57. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hu, B.Q. Fuzzy rough sets based on generalized residuated lattices. Inf. Sci. 2013, 248, 31–49. [Google Scholar] [CrossRef]
- She, Y.H.; Wang, G.J. An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput. Math. Appl. 2009, 58, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhan, J.; Chen, D. Covering-based variable precision L-fuzzy rough sets based on residuated lattices and corresponding applications. Int. J. Mach. Learn. Cybern. 2021, 12, 2407–2429. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, W.; Yeung, D.; Tsang, E.C.C. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Inf. Sci. 2006, 176, 1829–1848. [Google Scholar]
- Liu, G.L. Generalized rough sets over fuzzy lattices. Inf. Sci. 2008, 178, 1651–1662. [Google Scholar] [CrossRef]
- Ma, L.W. Two fuzzy covering rough set models and their generalizations over fuzzy lattices. Fuzzy Sets Syst. 2016, 294, 1–17. [Google Scholar] [CrossRef]
- Birkhoff, G.; von Neumann, J. The logic of quantum mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Li, T.; Leung, Y.; Zhang, W. Generalized fuzzy rough approximation operators based on fuzzy coverings. Int. J. Approx. Reason 2008, 48, 836–856. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [Google Scholar] [CrossRef]
- Yang, B.; Hu, B.Q. Matrix representations and interdependency on L-fuzzy covering-based approximation operators. Int. J. Approx. Reason. 2018, 96, 57–77. [Google Scholar] [CrossRef]
- Li, L.Q.; Jin, Q.; Hu, K.; Zhao, F.F. The axiomatic characterizations on L-fuzzy covering-based approximation operators. Int. J. Gen. Syst. 2017, 46, 332–353. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, B. Covering based rough set approximations. Inf. Sci. 2012, 200, 91–107. [Google Scholar] [CrossRef]
- Yao, Y. The superiority of three-way decisions in probabilistic rough set models. Inf. Sci. 2011, 180, 1080–1096. [Google Scholar] [CrossRef]
- Yao, Y. Three-way decisions with probabilistic rough sets. Inf. Sci. 2010, 180, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.I. A note on soft sets, rough soft sets and fuzzy soft sets. Appl. Soft Comput. 2011, 11, 3329–3332. [Google Scholar]
- Feng, F.; Li, C.; Davvaz, B.; Ali, M.I. Soft sets combined with fuzzy sets and rough sets: A tentative approach. Soft Comput. 2010, 14, 899–911. [Google Scholar] [CrossRef]
- Kanwal, R.S.; Shabir, M. Rough approximation of a fuzzy set in semigroups based on soft relations. Comput. Appl. Math. 2019, 38, 1–23. [Google Scholar] [CrossRef]
- Riaz, M.; Karaaslan, F.; Nawaz, I.; Sohail, M. Soft multi-rough set topology with applications to multi-criteria decision-making problems. Soft Comput. 2021, 25, 799–815. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R.; Kalsoom, H.; Pamucar, D.; Chu, Y.M. Linear Diophantine fuzzy soft rough sets for the selection of sustainable material handling equipment. Symmetry 2020, 12, 1215. [Google Scholar] [CrossRef]
- Ayub, S.; Shabir, M.; Riaz, M.; Aslam, M.; Chinram, R. Linear Diophantine Fuzzy Relations and Their Algebraic Properties with Decision Making. Symmetry 2021, 13, 945. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R.; Pamucar, D.; Chu, Y.M. Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM. Comput. Modeling Eng. Sci. 2021, 126, 1125–1164. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R. Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. J. Intell. Fuzzy Syst. 2019, 37, 5417–5439. [Google Scholar] [CrossRef]
- Sun, B.; Ma, W.; Xiao, X. Three-way group decision making based on multigranulation fuzzy decision-theoretic rough set over two universes. Int. J. Approx. Reason. 2017, 81, 87–102. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, H.; Sang, Y.; Liang, J. Multigranulation decision theoretic rough sets. Int. J. Approx. Reason. 2014, 55, 225–237. [Google Scholar] [CrossRef]
- Kong, Q.; Xu, W. The comparative study of covering rough sets and multi-granulation rough sets. Soft Comput. 2019, 23, 3237–3251. [Google Scholar] [CrossRef]
- Ma, W.; Lei, W.; Sun, B. Three-way group decisions based on multigranulation hesitant fuzzy decision-theoretic rough set over two universes. J. Intell. Fuzzy Syst. 2020, 38, 2165–2179. [Google Scholar] [CrossRef]
- Hassan, Y.F. Rough set classification based on quantum logic. J. Exp. Theor. Artif. Intell. 2017, 29, 1325–1336. [Google Scholar] [CrossRef]
- Dai, S. Topological characterizations of rough set theory based on quantum logic. New Math. Nat. Comput. 2021. [Google Scholar] [CrossRef]
- Pták, P.; Pulmannová, S. Orthomodular Structures as Quantum Logics; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Mittelstaedt, P. Quantum Logic; D. Reidel: Dordrecht, The Netherlands, 1978. [Google Scholar]
- Ying, M.S. Automata theory based on quantum logic (I). Int. J. Theor. Phys. 2000, 39, 985–995. [Google Scholar] [CrossRef]
- Ying, M.S. Automata theory based on quantum logic (II). Int. J. Theor. Phys. 2000, 39, 2545–2557. [Google Scholar] [CrossRef]
- Ying, M.S. A theory of computation based on quantum logic(I). Theor. Comput. Sci. 2005, 344, 134–207. [Google Scholar] [CrossRef] [Green Version]
- Qiu, D.W. Notes on automata theory based on quantum logic. Sci. China Ser. F Inf. Sci. 2007, 50, 154–169. [Google Scholar] [CrossRef]
- Dai, S. A note on implication operators of quantum logic. Quantum Mach. Intell. 2020, 2, 15. [Google Scholar] [CrossRef]
- Chiara, M.L.D.; Giuntini, R.; Greechie, R. Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
R | |||
---|---|---|---|
1 | 0 | 0 | |
0 | a | 0 | |
0 | 0 | b |
R | |||
---|---|---|---|
1 | 0 | 0 | |
0 | 1 | 0 | |
0 | 0 | 1 |
R | |||
---|---|---|---|
a | 0 | 0 | |
0 | a | 0 | |
0 | 0 | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S. Rough Approximation Operators on a Complete Orthomodular Lattice. Axioms 2021, 10, 164. https://doi.org/10.3390/axioms10030164
Dai S. Rough Approximation Operators on a Complete Orthomodular Lattice. Axioms. 2021; 10(3):164. https://doi.org/10.3390/axioms10030164
Chicago/Turabian StyleDai, Songsong. 2021. "Rough Approximation Operators on a Complete Orthomodular Lattice" Axioms 10, no. 3: 164. https://doi.org/10.3390/axioms10030164
APA StyleDai, S. (2021). Rough Approximation Operators on a Complete Orthomodular Lattice. Axioms, 10(3), 164. https://doi.org/10.3390/axioms10030164