A Family of the r-Associated Stirling Numbers of the Second Kind and Generalized Bernoulli Polynomials
Abstract
:1. Introduction
2. Basic Definitions
3. The Case When
4. The Blissard Problem
A Simple Application
5. Generalized Bernoulli Polynomials
A Larger Class of Bernoulli Polynomials
6. Representation Formulas
7. The Generalized Bernoulli Numbers
8. 2D Extensions of the Bernoulli and Appell Polynomials
2D Appell Polynomials
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Srivastava, H.M.; Kizilateş, C. A parametric kind of the Fubini-type polynomials. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM) 2019, 113, 3253–3267. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ricci, P.E.; Natalini, P. A family of complex Appell polynomial sets. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM) 2019, 113, 2359–2371. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Riyasat, M.; Khan, S.; Araci, S.; Acikgoz, M. A new approach to Legendre-truncated-exponential-based Sheffer sequences via Riordan arrays. Appl. Math. Comput. 2020, 369, 124683. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Çetinkaya, A.; Kımaz, O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 2014, 226, 484–491. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 2012, 219, 3219–3225. [Google Scholar] [CrossRef]
- Srivastava, R. Some properties of a family of incomplete hypergeometric functions. Russ. J. Math. Phys. 2013, 20, 121–128. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials. Appl. Math. Comput. 2014, 234, 277–285. [Google Scholar] [CrossRef]
- Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions. Appl. Math. Comput. 2014, 243, 132–137. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan 2019, 45, 234–269. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Masjed-Jamei, M.; Beyki, M.R. Some new generalizations and applications of the Apostol-Bernoulli, Apostol–Euler and Apostol-Genocchi polynomials. Rocky Mt. J. Math. 2019, 49, 681–697. [Google Scholar] [CrossRef]
- Lu, D.-Q.; Srivastava, H.M. Some series identities involving the generalized Apostol type and related polynomials. Comput. Math. Appl. 2011, 62, 3591–3602. [Google Scholar]
- Lu, D.-Q.; Srivastava, H.M. Some generalizations of the Apostol-Bernoulli and Apostol–Euler polynomials. J. Math. Anal. Appl. 2005, 308, 290–302. [Google Scholar]
- Lu, D.-Q.; Srivastava, H.M. Some relationships between the Apostol-Bernoulli and Apostol–Euler polynomials. Comput. Math. Appl. 2006, 51, 631–642. [Google Scholar]
- Lu, D.-Q.; Srivastava, H.M. Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 2011, 217, 5702–5728. [Google Scholar]
- Broder, A.Z. The r-Stirling numbers. Discret. Math. 1984, 49, 241–259. [Google Scholar]
- Connamacher, H.; Dobrosotskaya, J. On the uniformity of the approximation for r-associated Stirling numbers of the second kind. Contrib. Discret. Math. 2020, 15, 25–42. [Google Scholar]
- Riordan, J. An Introduction to Combinatorial Analysis; J Wiley & Sons: Chichester, UK, 1958. [Google Scholar]
- Carlitz, L. Note on Nörlund’s Bn(z) Polynomial. Proc. Amer. Math. Soc. 1960, 11, 452–455. [Google Scholar]
- Srivastava, H.M.; Todorov, P.G. An Explicit Formula for the Generalized Bernoulli Polynomials. J. Math. Anal. Appl. 1988, 130, 509–513. [Google Scholar]
- Srivastava, H.M.; Garg, M.; Choudhary, S. A new generalization of the Bernoulli and related polynomials. Russ. J. Math. Phys. 2010, 17, 251–261. [Google Scholar]
- Bretti, G.; Natalini, P.; Ricci, P.E. Generalizations of the Bernoulli and Appel polynomials. Abstract Appl. Anal. 2004, 7, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Elezović, N. Generalized Bernoulli Polynomials and Numbers, Revisited. Mediterr. J. Math. 2016, 13, 141–151. [Google Scholar] [CrossRef]
- Kurt, B. A Further Generalization of the Bernoulli Polynomials and on the 2D-Bernoulli Polynomials . Appl. Math. Sci. 2010, 4, 2315–2322. [Google Scholar]
- Kurt, B. Some Relationships between the Generalized Apostol-Bernoulli and Apostol–Euler Polynomials. Turk. J. Anal. Number Theory 2013, 1, 54–58. [Google Scholar] [CrossRef]
- Miloud, M.; Tiachachat, M. The values of the high order Bernoulli polynomials at integers and the r-Stirling numbers. arXiv 2014, arXiv:1401.5958. [Google Scholar]
- Natalini, P.; Bernardini, A. A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, 3, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. A propos d’une note de M. Pierre Humbert. C. R. Acad. Sci. Paris 1953, 236, 2031–2032. (In French) [Google Scholar]
- Chen, S.; Cai, Y.; Luo, Q.-M. An extension of generalized Apostol–Euler polynomials. Adv. Differ. Equ. 2013, 2013, 61. [Google Scholar] [CrossRef] [Green Version]
- Stanley, R.P. Enumerative Combinatorics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. In Advanced Special Functions and Applications, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 9–12 May 1999; Cocolicchio, D., Dattoli, G., Srivastava, H.M., Eds.; Aracne Editrice: Rome, Italy, 2000; pp. 147–164. [Google Scholar]
- Dattoli, G.; Ricci, P.E.; Srivastava, H.M. (Eds.) Advanced Special Functions and Related Topics in Probability and in Differential Equations. In Applied Mathematics and Computation, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 24–29 June 2001; Aracne Editrice: Rome, Italy, 2003; Volume 141, pp. 1–230. [Google Scholar]
- Dattoli, G.; Ricci, P.E.; Cesarano, C. Differential equations for Appell type polynomials. Fract. Calc. Appl. Anal. 2002, 5, 69–75. [Google Scholar]
- Dattoli, G.; Srivastava, H.M.; Ricci, P.E. Two-index multidimensional Gegenbauer polynomials and integral representations. Math. Comput. Model. 2003, 37, 283–291. [Google Scholar] [CrossRef]
- Ben Cheikh, Y. Some results on quasi-monomiality. Appl. Math. Comput. 2003, 141, 63–76. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques. Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Gould, H.W.; Hopper, A.T. Operational formulas connected with two generalizations of Hermite Polynomials. Duke Math. J. 1962, 29, 51–62. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Dattoli, G.; Lorenzutta, S.; Cesarano, C. Finite Sums and Generalized Forms of Bernoulli Polynomials. Rend. Mat. Ser. VII 1999, 19, 385–391. [Google Scholar]
- Natalini, P.; Ricci, P.E. Bell polynomials and some of their Applications. Cubo Mat. Educ. 2003, 5, 263–274. [Google Scholar]
- Natalini, P.; Ricci, P.E. Bell polynomials and modified Bessel functions of half-integral order. Appl. Math. Comput. 2015, 268, 270–274. [Google Scholar] [CrossRef]
- Cassisa, C.; Ricci, P.E. Orthogonal invariants and the Bell polynomials. Rend. Mat. Appl. Ser. VII 2000, 20, 293–303. [Google Scholar]
- Qi, F. Three closed forms for convolved Fibonacci numbers. Res. Nonlinear Anal. 2020, 3, 185–195. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, P.E.; Srivastava, R.; Natalini, P. A Family of the r-Associated Stirling Numbers of the Second Kind and Generalized Bernoulli Polynomials. Axioms 2021, 10, 219. https://doi.org/10.3390/axioms10030219
Ricci PE, Srivastava R, Natalini P. A Family of the r-Associated Stirling Numbers of the Second Kind and Generalized Bernoulli Polynomials. Axioms. 2021; 10(3):219. https://doi.org/10.3390/axioms10030219
Chicago/Turabian StyleRicci, Paolo Emilio, Rekha Srivastava, and Pierpaolo Natalini. 2021. "A Family of the r-Associated Stirling Numbers of the Second Kind and Generalized Bernoulli Polynomials" Axioms 10, no. 3: 219. https://doi.org/10.3390/axioms10030219
APA StyleRicci, P. E., Srivastava, R., & Natalini, P. (2021). A Family of the r-Associated Stirling Numbers of the Second Kind and Generalized Bernoulli Polynomials. Axioms, 10(3), 219. https://doi.org/10.3390/axioms10030219