Inequalities on General Lp-Mixed Chord Integral Difference
Abstract
:1. Introduction
2. Main Results
3. Preliminaries
- (1)
- is coninuous;
- (2)
- is radial Blaschke Minkowski additive, i.e., for all
- (3)
- intertwines rotations, i.e., , for all and .
- (1)
- is coninuous;
- (2)
- is radial Minkowski additive, i.e., for all
- (3)
- intertwines rotations, i.e., , for all and .
4. Proofs of Main Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, R.J. Geometric Tomography, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Gardner, R.J. The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 2002, 39, 355–405. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.S. The Brunn-Minkowski inequality for volume difference. Adv. Appl. Math. 2004, 32, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.B.; Wang, W.D.; Yuan, J. Inequalities of quermassintegrals about mixed Blaschke Minkowski homomorphisms. Tamkang J. Math. 2015, 46, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.J. Dual Brunn-Minkowski inequality for volume differences. Geom. Dedicata. 2010, 145, 169–180. [Google Scholar] [CrossRef]
- Zhao, C.J. On Blaschke-Minkowski Homomorphisms and Radial Blaschke-Minkowski Homomorphisms. J. Geom. Anal. 2016, 26, 1523–1538. [Google Scholar] [CrossRef]
- Lutwak, E. Mixed width-integrals of convex bodies. Israel J. Math. 1977, 28, 249–253. [Google Scholar] [CrossRef]
- Lu, F.H. Mixed chord-integrals of star bodies. J. Korean Math. Soc. 2010, 47, 277–288. [Google Scholar]
- Haberl, C. Lp intersection bodies. Adv. Math. 2008, 4, 2599–2624. [Google Scholar] [CrossRef] [Green Version]
- Haberl, C. Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. 2012, 4, 1565–1597. [Google Scholar] [CrossRef] [Green Version]
- Haberl, C.; Ludwig, M. A characterization of Lp intersection bodies. Int. Math. Res. Not. 2006, 2006, 10548. [Google Scholar] [CrossRef] [Green Version]
- Haberl, C.; Schuster, F.E. Asymmetric affine Lp sobolev inequalities. J. Funct. Anal. 2009, 257, 641–658. [Google Scholar] [CrossRef] [Green Version]
- Haberl, C.; Schuster, F.E.; Xiao, J. An asymmetric affine Po´lya-Szego¨ principle. Math. Ann. 2012, 352, 517–542. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.B.; Wang, W.D. General mixed chord-integrals of star bodies. Rocky Mt. J. Math. 2016, 46, 1499–1518. [Google Scholar] [CrossRef]
- Li, Z.F.; Wang, W.D. General Lp-mixed chord integrals of star bodies. J. Inequalities Appl. 2016, 58, 1–12. [Google Scholar]
- Haberl, C.; Schuster, F.E. General Lp affine isoperimetric inequalities. J. Differ. Geom. 2009, 83, 1–26. [Google Scholar] [CrossRef]
- Lutwak, E. Intersection bodies and dual mixed volumes. Adv. Math. 1988, 71, 232–261. [Google Scholar] [CrossRef] [Green Version]
- Schuster, F.E. Convolutions and multiplier transformations of convex bodies. Trans. Am. Math. Soc. 2007, 359, 5567–5591. [Google Scholar] [CrossRef] [Green Version]
- Schuster, F.E. Volume inequalities and additive maps of convex bodies. Mathematika 2007, 52, 211–234. [Google Scholar] [CrossRef] [Green Version]
- Schuster, F.E. Valuations and Busemann-Petty type problems. Adv. Math. 2008, 219, 344–368. [Google Scholar] [CrossRef] [Green Version]
- Schuster, F.E. Crofton measures and Minkowski valuations. Duke Math. J. 2010, 154, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Schuster, F.E.; Wannerer, T. GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 2012, 364, 815–826. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.J.; He, B.W. Lp radial Minkowski homomorphisms. Taiwan. J. Math. 2011, 15, 1183–1199. [Google Scholar] [CrossRef]
- Grinberg, E.; Zhang, G.Y. Convolutions transforms and convex bodies. Proc. Lond. Math. Soc. 1999, 78, 77–115. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, W.D. General Lp dual Blaschke bodies and the applications. J. Inequalities Appl. 2015, 2015, 233. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.Y.; Wu, D.H.; Leng, G.S. Quasi-Lp intersection bodies. Acta Math. Sin. 2007, 23, 1937–1948. [Google Scholar] [CrossRef]
- Losonczi, L.; Páles, Z.S. Inequalities for indefinite forms. J. Math. Anal. 1997, 205, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Beckenbach, E.F.; Bellman, R. Inequalities, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1965. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Wang, W.; Li, Z. Inequalities on General Lp-Mixed Chord Integral Difference. Axioms 2021, 10, 220. https://doi.org/10.3390/axioms10030220
Xiao H, Wang W, Li Z. Inequalities on General Lp-Mixed Chord Integral Difference. Axioms. 2021; 10(3):220. https://doi.org/10.3390/axioms10030220
Chicago/Turabian StyleXiao, Hongying, Weidong Wang, and Zhaofeng Li. 2021. "Inequalities on General Lp-Mixed Chord Integral Difference" Axioms 10, no. 3: 220. https://doi.org/10.3390/axioms10030220
APA StyleXiao, H., Wang, W., & Li, Z. (2021). Inequalities on General Lp-Mixed Chord Integral Difference. Axioms, 10(3), 220. https://doi.org/10.3390/axioms10030220