Next Article in Journal
A Relation-Theoretic Formulation of Browder–Göhde Fixed Point Theorem
Next Article in Special Issue
On the Discrete Weibull Marshall–Olkin Family of Distributions: Properties, Characterizations, and Applications
Previous Article in Journal
Constructing a Precise Fuzzy Feedforward Neural Network Using an Independent Fuzzification Approach
Previous Article in Special Issue
Is Football/Soccer Purely Stochastic, Made Out of Luck, or Maybe Predictable? How Does Bayesian Reasoning Assess Sports?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications

1
Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador
2
Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
3
Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, 9400 Vlorë, Albania
4
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
*
Author to whom correspondence should be addressed.
Axioms 2021, 10(4), 283; https://doi.org/10.3390/axioms10040283
Submission received: 2 September 2021 / Revised: 10 October 2021 / Accepted: 11 October 2021 / Published: 29 October 2021
(This article belongs to the Collection Mathematical Analysis and Applications)

Abstract

:
The main motivation of this article is derive a new post-quantum integral identity using twice (p, q)-differentiable functions. Using the identity as an auxiliary result, we will obtain some new variants of Hermite–Hadamard’s inequality essentially via the class of ψ-preinvex functions. To support our results, we offer some applications to a special means of positive real numbers and twice (p, q)-differentiable functions that are in absolute value bounded as well.
2010 Mathematics Subject Classification:
26A33; 26A51; 26D07; 26D10; 26D15; 26D20

1. Introduction and Preliminaries

Inequalities play a pivotal role in almost all branches of mathematics. For instance, the inequalities arising from the convexity property of related functions have numerous applications in the study of qualitative theory of differential equations and partial differential equations (see, for example, the papers of [1,2] for more details). In modern analysis, a significant amount of inequalities can be obtained by using the convexity property of the functions. Hermite–Hadamard’s inequality is one of the most studied inequalities pertaining to convexity. This result reads as
Υ μ 1 + μ 2 2 1 μ 2 μ 1 μ 1 μ 2 Υ ( x ) d x Υ ( μ 1 ) + Υ ( μ 2 ) 2
if Υ : [ μ 1 , μ 2 ] R is a convex function on closed interval [ μ 1 , μ 2 ] .
In recent years, the improvements, generalizations, and variants of Hermite–Hadamard’s inequality have been the subject of much research. In this regard, a variety of novel and innovative approaches have been utilized in obtaining new refinements of Hermite–Hadamard’s inequality. For the first time, Tariboon and Ntouyas [3] obtained a q -analogue of Hermite–Hadamard’s inequality using the concepts of quantum calculus, which is also known as calculus without limits. In quantum calculus, we establish the q -analogues of classical mathematical objects that can be recaptured by taking q 1 . Alp et al. [4] obtained a corrected q -analogue of Hermite–Hadamard’s inequality. Noor et al. [5] and Sudsutad et al. [6] derived some more q -analogues of Hermite–Hadamard-like inequalities involving first order q -differentiable convex functions, and Liu and Zhuang [7] established these analogues via second order q -differentiable convex functions. Zhang et al. [8] obtained a new generalized q -integral identity and obtained several new q -analogues of a first order q -differentiable convex function.
Chakarabarti and Jagannathan [9] studied post-quantum calculus, which is another significant generalization of quantum calculus is the post-quantum calculus. In quantum calculus, we deal with a q -number with one base q , but post-quantum calculus includes p and q -numbers with two independent variables p and q . Tunç and Gov [10] introduced the concepts of ( p , q ) -derivatives μ 1 D p , q Υ ( x ) and ( p , q ) -integrals on finite intervals μ 1 x Υ ( τ ) μ 1 d p , q τ for all x μ 1 , where x K R , as follows.
Definition 1
([10]). Let Υ : K R R be a continuous function and let x K and 0 < q < p 1 . The ( p , q ) -derivative on K of function Υ at x is then defined as
μ 1 D p , q Υ ( x ) = Υ ( p x + ( 1 p ) μ 1 ) Υ ( q x + ( 1 q ) μ 1 ) ( p q ) ( x μ 1 ) , x μ 1 .
Definition 2
([10]). Let Υ : K R R be a continuous function. The ( p , q ) -integral on K is then defined as
μ 1 x Υ ( τ ) μ 1 d p , q τ = ( p q ) ( x μ 1 ) n = 0 q n p n + 1 Υ q n p n + 1 x + 1 q n p n + 1 μ 1 ,
for x K and x μ 1 .
Since then, several new variants of classical integral inequalities have been obtained using the concepts of post-quantum calculus. For example, Awan et al. [11] obtained a generalized ( p , q ) -integral identity and obtained several new ( p , q ) -analogues of trapezium-like inequalities. Kunt et al. [12] obtained some ( p , q ) -analogues of Hermite–Hadamard and mid-point type inequalities. Yu et al. [13] derived several new ( p , q ) -analogues of some classical integral inequalities and discussed applications as well.
Definition 3.
A set K R is said to be an invex set with respect to the mapping ζ : K × K × [ 0 , 1 ] R if ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) K for every μ 1 , μ 2 K and ψ , τ [ 0 , 1 ] . The invex set K is also called an ζ-connected set.
Before we proceed further, let us recall the definition of ψ -preinvex functions.
Definition 4
([14]). A function Υ on the invex set K is said to be ψ-preinvex with respect to ζ ( μ 2 , μ 1 , ψ ) if
Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) ψ ( 1 τ ) Υ ( μ 1 ) + τ Υ ( μ 2 ) , μ 1 , μ 2 K , ψ , τ [ 0 , 1 ] .
Remark 1.
Note the following:
I.
If we take ζ ( μ 2 , μ 1 , ψ ) = μ 2 ψ μ 1 in Definition 4, then we have the definition of a ψ-convex function, see [15].
II.
If we choose ψ = 1 in Definition 4, then we obtain the class of classical preinvex functions, see [16].
The main motivation of this article is to derive a new post-quantum integral identity using twice ( p , q ) -differentiable functions. Using the identity as an auxiliary result, we will obtain some new variants of Hermite–Hadamard’s inequality essentially via the class of ψ -preinvex functions. To support our results, we also present some applications to a special means of positive real numbers and twice ( p , q ) -differentiable functions that are in absolute value bounded. We hope that the ideas and techniques of this paper will inspire interested readers working in this field.

2. Main Results

In this section, we derive new post-quantum integral identity. This result will be helpful in obtaining main results of this paper.
Lemma 1.
Let Υ : K R be a twice ( p , q ) -differentiable function on K (the interior of set K ), and let ψ μ 1 D p , q 2 Υ be continuous and ( p , q ) -integrable on K , where 0 < q < p 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) 0 d p , q τ .
Proof. 
Applying Definition 1, we have
ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) = ψ μ 1 D p , q ( ψ μ 1 D p , q Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) ) = ψ μ 1 D p , q Υ ( ψ μ 1 + p τ ζ ( μ 2 , μ 1 , ψ ) ) ψ μ 1 D p , q Υ ( ψ μ 1 + q τ ζ ( μ 2 , μ 1 , ψ ) ) τ ( p q ) ζ ( μ 2 , μ 1 , ψ ) = 1 τ ( p q ) ζ ( μ 2 , μ 1 , ψ ) Υ ( ψ μ 1 + p 2 τ ζ ( μ 2 , μ 1 , ψ ) ) Υ ( ψ μ 1 + p q τ ζ ( μ 2 , μ 1 , ψ ) ) τ p ( p q ) ζ ( μ 2 , μ 1 , ψ ) Υ ( ψ μ 1 + p q τ ζ ( μ 2 , μ 1 , ψ ) ) Υ ( ψ μ 1 + q 2 τ ζ ( μ 2 , μ 1 , ψ ) ) τ q ( p q ) ζ ( μ 2 , μ 1 , ψ ) = q Υ ( ψ μ 1 + p 2 τ ζ ( μ 2 , μ 1 , ψ ) ) ( p + q ) Υ ( ψ μ 1 + p q τ ζ ( μ 2 , μ 1 , ψ ) ) + p Υ ( ψ μ 1 + q 2 τ ζ ( μ 2 , μ 1 , ψ ) ) p q τ 2 ( p q ) 2 ζ 2 ( μ 2 , μ 1 , ψ ) .
Now by using Definition 2, we obtain
0 1 τ ( 1 q τ ) ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) 0 d p , q τ = 0 1 τ ( 1 q τ ) × q Υ ( ψ μ 1 + p 2 τ ζ ( μ 2 , μ 1 , ψ ) ) ( p + q ) Υ ( ψ μ 1 + q τ ζ ( μ 2 , μ 1 , ψ ) ) + p Υ ( ψ μ 1 + q 2 τ ζ ( μ 2 , μ 1 , ψ ) ) τ 2 p q ( p q ) 2 ζ 2 ( μ 2 , μ 1 , ψ ) 0 d p , q τ = 1 p q ( p q ) ζ 2 ( μ 2 , μ 1 , ψ ) q n = 0 Υ ψ μ 1 + p 2 q n p n + 1 ζ ( μ 2 , μ 1 , ψ ) ( p + q ) n = 0 Υ ψ μ 1 + p q n + 1 p n + 1 ζ ( μ 2 , μ 1 , ψ ) + p n = 0 Υ ψ μ 1 + q n + 2 p n + 1 ζ ( μ 2 , μ 1 , ψ ) q q ( p q ) ζ ( μ 2 , μ 1 , ψ ) n = 0 q n p n + 1 Υ ψ μ 1 + p 2 q n p n + 1 ζ ( μ 2 , μ 1 , ψ ) p q ( p q ) 2 ζ 3 ( μ 2 , μ 1 , ψ )
( p + q ) ( p q ) ζ ( μ 2 , μ 1 , ψ ) n = 0 q n + 1 p n + 1 Υ ψ μ 1 + p q n + 1 p n + 1 ζ ( μ 2 , μ 1 , ψ ) p q 2 ( p q ) 2 ζ 3 ( μ 2 , μ 1 , ψ ) + p ( p q ) ζ ( μ 2 , μ 1 , ψ ) n = 0 q n + 2 p n + 1 Υ ψ μ 1 + q n + 2 p n + 1 ζ ( μ 2 , μ 1 , ψ ) p q 3 ( p q ) 2 ζ 3 ( μ 2 , μ 1 , ψ ) = q n = 0 Υ ψ μ 1 + p 2 q n p n + 1 ζ ( μ 2 , μ 1 , ψ ) n = 0 Υ ψ μ 1 + p q n + 1 p n + 1 ζ ( μ 2 , μ 1 , ψ ) p q ( p q ) ζ 2 ( μ 2 , μ 1 , ψ ) p n = 0 Υ ψ μ 1 + p q n + 1 p n + 1 ζ ( μ 2 , μ 1 , ψ ) n = 0 Υ ψ μ 1 + q n + 2 p n + 1 ζ ( μ 2 , μ 1 , ψ ) p q ( p q ) ζ 2 ( μ 2 , μ 1 , ψ ) q q ( p q ) ζ ( μ 2 , μ 1 , ψ ) n = 0 q n p n + 1 Υ ψ μ 1 + p 2 q n p n + 1 ζ ( μ 2 , μ 1 , ψ ) p q ( p q ) 2 ζ 3 ( μ 2 , μ 1 , ψ ) p 2 ( p + q ) ( p q ) ζ ( μ 2 , μ 1 , ψ ) n = 0 q n + 1 p n + 2 Υ ψ μ 1 + p 2 q n + 1 p n + 2 ζ ( μ 2 , μ 1 , ψ ) p q 2 ( p q ) 2 ζ 3 ( μ 2 , μ 1 , ψ ) + p 3 ( p q ) ζ ( μ 2 , μ 1 , ψ ) n = 0 q n + 2 p n + 3 Υ ψ μ 1 + p 2 q n + 2 p n + 3 ζ ( μ 2 , μ 1 , ψ ) p q 3 ( p q ) 2 ζ 3 ( μ 2 , μ 1 , ψ ) = q Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) Υ ( ψ μ 1 ) p Υ ( ψ μ 1 + q ζ ( μ 2 , μ 1 , ψ ) ) Υ ( ψ μ 1 ) p q ( p q ) ζ 2 ( μ 2 , μ 1 , ψ ) p + q p 3 q 2 ζ 3 ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) 0 d p , q τ q 2 + p q p p q 2 ( p q ) ζ 2 ( μ 2 , μ 1 , ψ ) Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) ) + Υ ( ψ μ 1 + q ζ ( μ 2 , μ 1 , ψ ) ) q ( p q ) ζ 2 ( μ 2 , μ 1 , ψ ) = Υ ( ψ μ 1 ) p q ζ 2 ( μ 2 , μ 1 , ψ ) + Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) ) q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q p 3 q 2 ζ 3 ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x .
Multiplying both sides of the above equality by p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q , we obtain the required result. □
Using Lemma 1, we can obtain the following new results.
Theorem 1.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and ( p , q ) -integrable on K , where 0 < q < p 1 . Assume that | ψ μ 1 D p , q 2 Υ | is a ψ-preinvex function. Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( ψ ( p 4 p 3 + p 2 q 2 ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | + p 3 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | ) ( p + q ) 2 ( p 2 + q 2 ) ( q 2 + p q + p 2 ) .
Proof. 
Using Lemma 1, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | 0 1 τ ( 1 τ ) ( 1 q τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | 0 1 τ 2 ( 1 q τ ) 0 d p , q τ = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( ψ ( p 4 p 3 + p 2 q 2 ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | + p 3 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | ) ( p + q ) 2 ( p 2 + q 2 ) ( q 2 + p q + p 2 ) .
This completes the proof. □
Theorem 2.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Suppose that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r ψ d 1 | μ 1 D p , q 2 Υ ( ψ μ 1 ) | r + d 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r ,
where
d 1 : = ( p q ) n = 0 q 2 n p 2 n + 2 q 3 n p 3 n + 3 1 q n + 1 p n + 1 r
and
d 2 : = ( p q ) n = 0 q 3 n p 3 n + 3 1 q n + 1 p n + 1 r .
Proof. 
Using Lemma 1, the power mean inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ 0 d p , q τ 1 1 r 0 1 τ ( 1 q τ ) r | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 1 p + q 1 1 r ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 τ ( 1 τ ) ( 1 q τ ) r 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ 2 ( 1 q τ ) r 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r ψ d 1 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + d 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r .
This completes the proof. □
Theorem 3.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Assume that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r > 1 and 1 s + 1 r = 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) h 1 s ψ ( q 2 + p 2 + p q p q ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + ( p + q ) | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) ( q 2 + p q + p 2 ) 1 r ,
where
h : = ( p q ) n = 0 q 2 n p 2 n + 2 1 q n p n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) s 0 d p , q τ 1 s 0 1 τ | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) s 0 d p , q τ 1 s × ψ | μ 1 D p , q 2 Υ ( ψ μ 1 ) | r 0 1 τ ( 1 τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ 2 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) h 1 s ψ ( q 2 + p 2 + p q p q ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + ( p + q ) | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) ( q 2 + p q + p 2 ) 1 r .
This completes the proof. □
Theorem 4.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Suppose that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) ψ k 1 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + k 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r ,
where
k 1 : = ( p q ) n = 0 q n p n + 1 r + 1 1 q n p n + 1 1 q n + 1 p n + 1 r
and
k 2 : = ( p q ) n = 0 q n p n + 1 r + 3 1 q n + 1 p n + 1 r .
Proof. 
Using Lemma 1, the power mean inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 1 0 d p , q τ 1 1 r 0 1 τ r ( 1 q τ ) r | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 τ r ( 1 τ ) ( 1 q τ ) r 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ r + 2 ( 1 q τ ) r 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) ψ k 1 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + k 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r .
This completes the proof. □
Theorem 5.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Assume that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r > 1 and 1 s + 1 r = 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) ω 1 s ψ ( p + q 1 ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) 1 r ,
where
ω : = ( p q ) n = 0 q n p n + 1 s + 1 1 q n + 1 p n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ s ( 1 q τ ) s 0 d p , q τ 1 s 0 1 | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q × 0 1 τ s ( 1 q τ ) s 0 d p , q τ 1 s ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 ( 1 τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) ω 1 s ψ ( p + q 1 ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) 1 r .
This completes the proof. □
Theorem 6.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Suppose that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r > 1 and 1 s + 1 r = 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) p q p s + 1 q s + 1 1 s ψ Δ 1 | μ 1 D p , q 2 Υ ( μ 1 ) | r + Δ 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r ,
where
Δ 1 : = ( p q ) n = 0 q n p n + 1 q 2 n p 2 n + 2 1 q n + 1 p n + 1 r
and
Δ 2 : = ( p q ) n = 0 q 2 n p 2 n + 2 1 q n + 1 p n + 1 r .
Proof. 
Using Lemma 1, Hölder’s inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ
p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ s 0 d p , q τ 1 s 0 1 ( 1 q τ ) r | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q p q p s + 1 q s + 1 1 s ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 ( 1 τ ) ( 1 q τ ) r 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ ( 1 q τ ) r 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) p q p s + 1 q s + 1 1 s ψ Δ 1 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + Δ 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r .
This completes the proof. □
Theorem 7.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Assume that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r > 1 and 1 s + 1 r = 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) γ 1 s ψ p q p r + 1 q r + 1 p q p r + 2 q r + 2 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p q p r + 2 q r + 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r ,
where
γ : = ( p q ) n = 0 q n p n + 1 1 q n + 1 p n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 ( 1 q τ ) s 0 d p , q τ 1 s 0 1 τ r | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 ( 1 q τ ) s 0 d p , q τ 1 s ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 τ r ( 1 τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ r + 1 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) γ 1 s ψ p q p r + 1 q r + 1 p q p r + 2 q r + 2 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p q p r + 2 q r + 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r .
This completes the proof. □
Theorem 8.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Suppose that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p 2 1 r q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r p 2 q 2 + p q + p 2 1 1 r ψ ( p 4 p 3 + p 2 q 2 ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p 3 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) ( p 2 + q 2 ) ( q 2 + p q + p 2 ) 1 r .
Proof. 
Using Lemma 1, the power mean inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) 0 d p , q τ 1 1 r 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) 0 d p , q τ 1 1 r × ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 τ ( 1 τ ) ( 1 q τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ 2 ( 1 q τ ) 0 d p , q τ 1 r = p 2 1 r q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r p 2 q 2 + p q + p 2 1 1 r ψ ( p 4 p 3 + p 2 q 2 ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p 3 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) ( p 2 + q 2 ) ( q 2 + p q + p 2 ) 1 r .
This completes the proof. □
Theorem 9.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Assume that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p 2 1 r q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r ψ p q p r + 1 q r + 1 ( p q ) ( 1 + q ) p r + 2 q r + 2 + q ( p q ) p r + 3 q r + 3 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p q p r + 2 q r + 2 q ( p q ) p r + 3 q r + 3 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r .
Proof. 
Using Lemma 1, the power mean inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 ( 1 q τ ) 0 d p , q τ 1 1 r 0 1 τ r ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 ( 1 q τ ) 0 d p , q τ 1 1 r × ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 τ r ( 1 τ ) ( 1 q τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ r + 1 ( 1 q τ ) 0 d p , q τ 1 r = p 2 1 r q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r ψ p q p r + 1 q r + 1 ( p q ) ( 1 + q ) p r + 2 q r + 2 + q ( p q ) p r + 3 q r + 3 | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p q p r + 2 q r + 2 q ( p q ) p r + 3 q r + 3 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 1 r .
This completes the proof. □
Theorem 10.
Let Υ : K R be a twice ( p , q ) -differentiable function on K , and let ψ μ 1 D p , q 2 Υ be continuous and integrable on K , where 0 < q < p 1 . Suppose that | ψ μ 1 D p , q 2 Υ | r is a ψ-preinvex function for r > 1 and 1 s + 1 r = 1 . Thus,
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) λ 1 s ψ ( p 3 p 2 + p q 2 + p 2 q ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) ( q 2 + p q + p 2 ) 1 r ,
where
λ : = ( p q ) n = 0 q n p n + 1 s + 1 1 q n + 1 p n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, the ψ -preinvexity of | ψ μ 1 D p , q 2 Υ | r , and the properties of the modulus, we have
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | 0 d p , q τ
p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ s ( 1 q τ ) 0 d p , q τ 1 s 0 1 ( 1 q τ ) | ψ μ 1 D p , q 2 Υ ( ψ μ 1 + τ ζ ( μ 2 , μ 1 , ψ ) ) | r 0 d p , q τ 1 r p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) p + q 0 1 τ s ( 1 q τ ) s 0 d p , q τ 1 s × ψ | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r 0 1 ( 1 τ ) ( 1 q τ ) 0 d p , q τ + | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r 0 1 τ ( 1 q τ ) 0 d p , q τ 1 r = p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) λ 1 s ψ ( p 3 p 2 + p q 2 + p 2 q ) | ψ μ 1 D p , q 2 Υ ( μ 1 ) | r + p 2 | ψ μ 1 D p , q 2 Υ ( μ 2 ) | r ( p + q ) ( q 2 + p q + p 2 ) 1 r .
This completes the proof. □

3. Applications

In this section, we will discuss some applications regarding our main results given in Section 2 for special means and bounded functions as well.

3.1. Application to Special Means

First, let us denote
M : = q ( ( 1 p 2 ) μ 1 + p 2 μ 2 ) n ( p + q ) ( ( 1 p q ) μ 1 + p q μ 2 ) n + p ( ( 1 q 2 ) μ 1 + q 2 μ 2 ) n p q ( p q ) 2 ( μ 2 μ 1 ) 2 ,
where 0 < μ 1 < μ 2 are real numbers and 0 < q < p 1 .
  • The arithmetic mean is defined as
    A ( μ 1 , μ 2 ) : = μ 1 + μ 2 2 .
  • The generalized logarithmic mean is given by
    L n ( μ 1 , μ 2 ) : = μ 2 n + 1 μ 1 n + 1 ( n + 1 ) ( μ 2 μ 1 ) 1 n , n R { 1 , 0 } .
Using the above special means, we can establish the following inequalities.
Proposition 1.
Let 0 < μ 1 < μ 2 , n > 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( ( p 4 p 3 + p 2 q 2 ) n ( n 1 ) μ 1 n 2 + p 3 | M | ) ( p + q ) 2 ( p 2 + q 2 ) ( q 2 + p q + p 2 ) .
Proof. 
The proof directly follows from Theorem 1, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 2.
Let 0 < μ 1 < μ 2 , n > 1 , r 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) ( p + q ) 2 1 r d 1 n ( n 1 ) μ 1 r ( n 2 ) + d 2 | M | r 1 r ,
Proof. 
The proof directly follows from Theorem 2, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 3.
Let 0 < μ 1 < μ 2 , n > 1 , r > 1 , 1 s + 1 r = 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( p + q ) h 1 s ( q 2 + p 2 + p q p q ) n ( n 1 ) μ 1 r ( n 2 ) + ( p + q ) | M | r ( p + q ) ( q 2 + p q + p 2 ) 1 r .
Proof. 
The proof directly follows from Theorem 3, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 4.
Let 0 < μ 1 < μ 2 , n > 1 , r 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( p + q ) n ( n 1 ) k 1 μ 1 r ( n 2 ) + k 2 | M | r 1 r .
Proof. 
The proof directly follows from Theorem 4, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 5.
Let 0 < μ 1 < μ 2 , n > 1 , r > 1 , 1 s + 1 r = 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( p + q ) ω 1 s n ( n 1 ) ( p + q 1 ) μ 1 r ( n 2 ) + | M | r ( p + q ) 1 r .
Proof. 
The proof directly follows from Theorem 5, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 6.
Let 0 < μ 1 < μ 2 , n > 1 , r > 1 , 1 s + 1 r = 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( p + q ) p q p s + 1 q s + 1 1 s n ( n 1 ) Δ 1 μ 1 r ( n 2 ) + Δ 2 | M | r 1 r .
Proof. 
The proof directly follows from Theorem 6, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 7.
Let 0 < μ 1 < μ 2 , n > 1 , r > 1 , 1 s + 1 r = 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( p + q ) γ 1 s p q p r + 1 q r + 1 p q p r + 2 q r + 2 μ 1 r ( n 2 ) + p q p r + 2 q r + 2 | M | r 1 r .
Proof. 
The proof directly follows from Theorem 7, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 8.
Let 0 < μ 1 < μ 2 , n > 1 , r 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p 2 1 r q 2 ( μ 2 μ 1 ) 2 ( p + q ) 2 1 r p 2 q 2 + p q + p 2 1 1 r n ( n 1 ) ( p 4 p 3 + p 2 q 2 ) μ 1 r ( n 2 ) + p 3 | M | r ( p + q ) ( p 2 + q 2 ) ( q 2 + p q + p 2 ) 1 r .
Proof. 
The proof directly follows from Theorem 8, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 9.
Let 0 < μ 1 < μ 2 , n > 1 , r 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p 2 1 r q 2 ( μ 2 μ 1 ) 2 ( p + q ) 2 1 r p q p r + 1 q r + 1 ( p q ) ( 1 + q ) p r + 2 q r + 2 + q ( p q ) p r + 3 q r + 3 n ( n 1 ) μ 1 r ( n 2 ) + p q p r + 2 q r + 2 q ( p q ) p r + 3 q r + 3 | M | r 1 r .
Proof. 
The proof directly follows from Theorem 9, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □
Proposition 10.
Let 0 < μ 1 < μ 2 , n > 1 , r > 1 , 1 s + 1 r = 1 and 0 < q < p 1 . Thus,
2 p + q A μ 1 n , p ( ( 1 p ) μ 1 + p μ 2 ) n ( n + 1 ) ( p q ) p 2 ( p n + 1 q n + 1 ) L n n ( μ 1 , ( 1 p 2 ) μ 1 + p 2 μ 2 ) p q 2 ( μ 2 μ 1 ) 2 ( p + q ) λ 1 s n ( n 1 ) ( p 3 p 2 + p q 2 + p 2 q ) μ 1 r ( n 2 ) + p 2 | M | r ( p + q ) ( q 2 + p q + p 2 ) 1 r ,
Proof. 
The proof directly follows from Theorem 10, applying Υ ( x ) = x n , ψ = 1 and ζ ( μ 2 , μ 1 ) = μ 2 μ 1 . □

3.2. Application to Bounded Functions

We suppose that the following condition is satisfied:
| ψ μ 1 D p , q 2 Υ | ϝ ,
which means that the twice ( p , q ) -differentiable function Υ is in absolute value bounded from the positive real number ϝ . Applying the above condition, we are in a position to derive some new interesting inequalities using our main results.
Proposition 11.
Under the conditions of Theorem 1, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( ψ ( p 4 p 3 + p 2 q 2 ) + p 3 ) ϝ ( p + q ) 2 ( p 2 + q 2 ) ( q 2 + p q + p 2 ) .
Proposition 12.
Under the conditions of Theorem 2, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r ψ d 1 + d 2 1 r ϝ .
Proposition 13.
Under the conditions of Theorem 3, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) h 1 s ψ ( q 2 + p 2 + p q p q ) + p + q ( p + q ) ( q 2 + p q + p 2 ) 1 r ϝ .
Proposition 14.
Under the conditions of Theorem 4, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) ψ k 1 + k 2 1 r ϝ .
Proposition 15.
Under the conditions of Theorem 5, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) ω 1 s ψ ( p + q 1 ) + 1 ( p + q ) 1 r ϝ .
Proposition 16.
Under the conditions of Theorem 6, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) p q p s + 1 q s + 1 1 s ψ Δ 1 + Δ 2 1 r ϝ .
Proposition 17.
Under the conditions of Theorem 7, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) γ 1 s ψ p q p r + 1 q r + 1 p q p r + 2 q r + 2 + p q p r + 2 q r + 2 1 r ϝ .
Proposition 18.
Under the conditions of Theorem 8, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p 2 1 r q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r p 2 q 2 + p q + p 2 1 1 r ψ ( p 4 p 3 + p 2 q 2 ) + p 3 ( p + q ) ( p 2 + q 2 ) ( q 2 + p q + p 2 ) 1 r ϝ .
Proposition 19.
Under the conditions of Theorem 9, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p 2 1 r q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) 2 1 r ψ p q p r + 1 q r + 1 ( p q ) ( 1 + q ) p r + 2 q r + 2 + q ( p q ) p r + 3 q r + 3 + p q p r + 2 q r + 2 q ( p q ) p r + 3 q r + 3 1 r ϝ .
Proposition 20.
Under the conditions of Theorem 10, the following inequality holds:
q Υ ( ψ μ 1 ) + p Υ ( ψ μ 1 + p ζ ( μ 2 , μ 1 , ψ ) p + q 1 p 2 ζ ( μ 2 , μ 1 , ψ ) ψ μ 1 ψ μ 1 + p 2 ζ ( μ 2 , μ 1 , ψ ) Υ ( x ) ψ μ 1 d p , q x p q 2 ζ 2 ( μ 2 , μ 1 , ψ ) ( p + q ) λ 1 s ψ ( p 3 p 2 + p q 2 + p 2 q ) + p 2 ( p + q ) ( q 2 + p q + p 2 ) 1 r ϝ .
Remark 2.
Since the class of ψ-preinvex functions have large applications in many mathematical areas, they can be applied to obtain several new results in convex analysis, special functions, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. For more details, please see [17,18,19,20,21,22,23,24].

4. Conclusions

In this paper, we have established a new post-quantum integral identity using twice ( p , q ) -differentiable functions. From the applied identity as an auxiliary result, we have obtained some new variants of Hermite–Hadamard’s inequality essentially pertaining to the class of ψ -preinvex functions. In order to illustrate the efficiency of our main results, some applications regarding special means of positive real numbers and twice ( p , q ) -differentiable functions that are bounded are provided as well. To the best of our knowledge, these results are new in the literature. Since the class of ψ -preinvex functions have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. Studies relating convexity, partial convexity, and preinvex functions (as contractive operators) may have useful applications in complex interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving Gauss–Laplace distribution. For more details, please see [25,26,27,28,29,30,31,32,33].

Author Contributions

All authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled, “Some integrals inequalities and generalized convexity” (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).

Data Availability Statement

No data were used to support this study.

Acknowledgments

The authors are thankful to the editor and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Li, T.-X.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 3, 489–500. [Google Scholar] [CrossRef]
  2. Li, T.-X.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction–dominated regime. Diff. Int. Equ. 2021, 5, 315–336. [Google Scholar]
  3. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
  4. Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 2, 193–203. [Google Scholar] [CrossRef] [Green Version]
  5. Noor, M.A.; Noor, K.I.; Awan, M.U. Some Quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  6. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 3, 781–793. [Google Scholar] [CrossRef] [Green Version]
  7. Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 2, 501–522. [Google Scholar]
  8. Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)–convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
  9. Chakrabarti, R.; Jagannathan, R. A (p, q)–oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, L711. [Google Scholar] [CrossRef]
  10. Tunç, M.; Göv, E. Some integral inequalities via (p, q)–calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 95. [Google Scholar]
  11. Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I.; Chu, Y.M. On post quantum integral inequalities. J. Math. Inequal. 2021, 2, 629–654. [Google Scholar] [CrossRef]
  12. Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p,q)–Hermite–Hadamard inequalities and (p,q)–estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 969–992. [Google Scholar] [CrossRef]
  13. Yu, B.; Luo, C.Y.; Du, T.S. On the refinements of some important inequalities via (p,q)–calculus and their applications. J. Inequal. Appl. 2021, 2021, 82. [Google Scholar] [CrossRef]
  14. Du, T.S.; Liao, J.G.; Chen, L.Z.; Awan, M.U. Properties and Riemann–Liouville fractional Hermite–Hadamard inequalities for the generalized (α,m)–preinvex functions. J. Inequal. Appl. 2016, 2016, 306. [Google Scholar] [CrossRef] [Green Version]
  15. Mihesan, V.G. A Generalization of the Convexity, Seminar on Functional Equations; Approx. and Convex; Science and Education: Cluj-Napoca, Romania, 1993. [Google Scholar]
  16. Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
  17. Butt, S.I.; Umar, M.; Khan, K.A.; Kashuri, A.; Emadifar, H. Fractional Hermite–Jensen–Mercer integral inequalities with respect to another function and application. Complexity 2021, 2021, 9260828. [Google Scholar] [CrossRef]
  18. Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. Math. Methods Appl. Sci. 2016, 11, 661–681. [Google Scholar]
  19. Houas, M. Certain weighted integral inequalities involving the fractional hypergeometric operators. Sci. Ser. A Math. Sci. 2016, 27, 87–97. [Google Scholar]
  20. Mohammed, P.O.; Brevik, I. A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
  21. Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
  22. Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
  23. Srivastava, H.M.; Bansal, M.K.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function. Math. Meth. Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
  24. Aldhaifallah, M.; Tomar, M.; Nisar, K.S.; Purohit, S.D. Some new inequalities for (k,s)–fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 5374–5381. [Google Scholar] [CrossRef]
  25. Kak, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  26. Zhou, X.S.; Huang, C.X.; Hu, H.J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar] [CrossRef] [Green Version]
  27. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
  28. Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
  29. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
  30. Barnett, N.S.; Cerone, P.; Dragomir, S.S.; Roumeliotis, J. Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval. J. Inequal. Pure Appl. Math. 2001, 2, 1–18. [Google Scholar]
  31. Barnett, N.S.; Dragomir, S.S. Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval. RGMIA Res. Rep. Colloq. 1999, 2, 1–7. [Google Scholar]
  32. Cerone, P.; Dragomir, S.S. On some inequalities for the expectation and variance. Korean J. Comput. Appl. Math. 2000, 2, 357–380. [Google Scholar] [CrossRef] [Green Version]
  33. Pecarič, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Ordering and Statistical Applications; Academic Press: New York, NY, USA, 1991. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications. Axioms 2021, 10, 283. https://doi.org/10.3390/axioms10040283

AMA Style

Vivas-Cortez M, Awan MU, Talib S, Kashuri A, Noor MA. Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications. Axioms. 2021; 10(4):283. https://doi.org/10.3390/axioms10040283

Chicago/Turabian Style

Vivas-Cortez, Miguel, Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, and Muhammad Aslam Noor. 2021. "Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications" Axioms 10, no. 4: 283. https://doi.org/10.3390/axioms10040283

APA Style

Vivas-Cortez, M., Awan, M. U., Talib, S., Kashuri, A., & Noor, M. A. (2021). Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications. Axioms, 10(4), 283. https://doi.org/10.3390/axioms10040283

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop