Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Applications
3.1. Application to Special Means
- The arithmetic mean is defined as
- The generalized logarithmic mean is given by
3.2. Application to Bounded Functions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.-X.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 3, 489–500. [Google Scholar] [CrossRef]
- Li, T.-X.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction–dominated regime. Diff. Int. Equ. 2021, 5, 315–336. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 2, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some Quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 3, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 2, 501–522. [Google Scholar]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)–convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p, q)–oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, L711. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. Some integral inequalities via (p, q)–calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 95. [Google Scholar]
- Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I.; Chu, Y.M. On post quantum integral inequalities. J. Math. Inequal. 2021, 2, 629–654. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p,q)–Hermite–Hadamard inequalities and (p,q)–estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Yu, B.; Luo, C.Y.; Du, T.S. On the refinements of some important inequalities via (p,q)–calculus and their applications. J. Inequal. Appl. 2021, 2021, 82. [Google Scholar] [CrossRef]
- Du, T.S.; Liao, J.G.; Chen, L.Z.; Awan, M.U. Properties and Riemann–Liouville fractional Hermite–Hadamard inequalities for the generalized (α,m)–preinvex functions. J. Inequal. Appl. 2016, 2016, 306. [Google Scholar] [CrossRef] [Green Version]
- Mihesan, V.G. A Generalization of the Convexity, Seminar on Functional Equations; Approx. and Convex; Science and Education: Cluj-Napoca, Romania, 1993. [Google Scholar]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Umar, M.; Khan, K.A.; Kashuri, A.; Emadifar, H. Fractional Hermite–Jensen–Mercer integral inequalities with respect to another function and application. Complexity 2021, 2021, 9260828. [Google Scholar] [CrossRef]
- Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Cauchy problems with Caputo Hadamard fractional derivatives. Math. Methods Appl. Sci. 2016, 11, 661–681. [Google Scholar]
- Houas, M. Certain weighted integral inequalities involving the fractional hypergeometric operators. Sci. Ser. A Math. Sci. 2016, 27, 87–97. [Google Scholar]
- Mohammed, P.O.; Brevik, I. A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bansal, M.K.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag–Leffler function. Math. Meth. Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Aldhaifallah, M.; Tomar, M.; Nisar, K.S.; Purohit, S.D. Some new inequalities for (k,s)–fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 5374–5381. [Google Scholar] [CrossRef]
- Kak, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Zhou, X.S.; Huang, C.X.; Hu, H.J.; Liu, L. Inequality estimates for the boundedness of multilinear singular and fractional integral operators. J. Inequal. Appl. 2013, 2013, 303. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Barnett, N.S.; Cerone, P.; Dragomir, S.S.; Roumeliotis, J. Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval. J. Inequal. Pure Appl. Math. 2001, 2, 1–18. [Google Scholar]
- Barnett, N.S.; Dragomir, S.S. Some elementary inequalities for the expectation and variance of a random variable whose pdf is defined on a finite interval. RGMIA Res. Rep. Colloq. 1999, 2, 1–7. [Google Scholar]
- Cerone, P.; Dragomir, S.S. On some inequalities for the expectation and variance. Korean J. Comput. Appl. Math. 2000, 2, 357–380. [Google Scholar] [CrossRef] [Green Version]
- Pecarič, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Ordering and Statistical Applications; Academic Press: New York, NY, USA, 1991. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications. Axioms 2021, 10, 283. https://doi.org/10.3390/axioms10040283
Vivas-Cortez M, Awan MU, Talib S, Kashuri A, Noor MA. Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications. Axioms. 2021; 10(4):283. https://doi.org/10.3390/axioms10040283
Chicago/Turabian StyleVivas-Cortez, Miguel, Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, and Muhammad Aslam Noor. 2021. "Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications" Axioms 10, no. 4: 283. https://doi.org/10.3390/axioms10040283
APA StyleVivas-Cortez, M., Awan, M. U., Talib, S., Kashuri, A., & Noor, M. A. (2021). Some New Post-Quantum Integral Inequalities Involving Twice (p, q)-Differentiable ψ-Preinvex Functions and Applications. Axioms, 10(4), 283. https://doi.org/10.3390/axioms10040283