A Relation-Theoretic Formulation of Browder–Göhde Fixed Point Theorem
Abstract
:1. Introduction
- The partial ordering is replaced by a transitive binary relation;
- The transitivity of the relation is not needed on the whole space X, but it can be limited on a suitable subset K of X;
- The closedness and convexity of all order intervals in X are not required, but it suffices that merely certain relational intervals in K are closed and convex. Furthermore, the convexity and closedness of whole set K are also relaxed;
- The boundedness of the whole set K is replaced by a relatively weaker assumption.
2. Relation-Theoretic Notions
- (1)
- The inverse or transpose or dual relation of , denoted by , is defined by .
- (2)
- The symmetric closure of , denoted by , is defined to be the set (). Indeed, is the smallest symmetric relation on K containing .
- (i)
- is T-closed;
- (ii)
- for all with ,
- (i)
- T is -nonexpansive ⟺T is -nonexpansive.
- (ii)
- T is -nonexpansive ⟺T is -nonexpansive.
- (iii)
- Under universal relation , the notion of -nonexpansive mapping reduces to that of nonexpansive mapping.
3. Main Results
- (a)
- ;
- (b)
- is nonempty, closed and convex for each ;
- (c)
- is bounded;
- (a)
- ;
- (b)
- is nonempty, closed and convex for each ;
- (c)
- is bounded;
4. Certain Consequences
- (a)
- ;
- (b)
- for each , the order interval is nonempty, closed and convex;
- (c)
- is bounded;
- (a)
- ;
- (b)
- for each , the order interval is nonempty, closed and convex;
- (c)
- is bounded;
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intgrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. Proc. K Ned. Akad. Wet. Ser. A Indag. Math. 1968, 71, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 30, 25. [Google Scholar] [CrossRef]
- Krasnosel’skiǐ, M.A.; Vaxixnikko, G.M.; Zabrexixko, P.P.; Rutitskixix, Y.B.; Stetsenko, V.Y. Approximate Solution of Operator Equations; Wolters–Noordhoff Publishing: Groningen, The Netherlands, 1972. [Google Scholar]
- Matkowski, J. Integrable solutions of functional equations. Dissertationes Math. 1975, 127, 68. [Google Scholar]
- Khan, M.S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alber, Y.I.; Guerre-Delabriere, S. Principles of weakly contractive maps in Hilbert spaces. In New Results in Operator Theory and Its Applications; Birkhäuser: Basel, Switzerland, 1997. [Google Scholar]
- Rhoades, B.E. Some theorems on weakly contractive maps. Nonlinear Anal. Theory Method Appl. 2001, 47, 2683–2693. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Khan, A.R.; Imdad, M. Some coincidence theorems for generalized nonlinear contractions in ordered metric spaces with applications. Fixed Point Theory Appl. 2014, 2014, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Edelstein’s fixed point theorem in semimetric spaces. J. Nonlinear Var. Anal. 2018, 2, 165–175. [Google Scholar]
- Delfani, M.; Farajzadeh, A.; Wen, C.F. Some fixed point theorems of generalized Ft-contraction mappings in b-metric spaces. J. Nonlinear Var. Anal. 2021, 5, 615–625. [Google Scholar]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Turinici, M. Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 1986, 117, 100–127. [Google Scholar] [CrossRef] [Green Version]
- Turinici, M. Fixed points for monotone iteratively local contractions. Dem. Math. 1986, 19, 171–180. [Google Scholar]
- Turinici, M. Ran-Reurings fixed point results in ordered metric spaces. Libertas Math. 2011, 31, 49–55. [Google Scholar]
- Turinici, M. Nieto-Lopez theorems in ordered metric spaces. Math. Student 2012, 81, 219–229. [Google Scholar]
- Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [Google Scholar] [CrossRef]
- Browder, F.E. Fixed-point theorems for noncompact mappings in Hilbert space. Proc. Natl. Acad. Sci. USA 1965, 53, 1272–1276. [Google Scholar] [CrossRef] [Green Version]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göhde, D. Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Bachar, M.; Khamsi, M.A. Fixed points of monotone mappings and application to integral equations. Fixed Point Theory Appl. 2015, 2015, 110. [Google Scholar] [CrossRef] [Green Version]
- Bachar, M.; Khamsi, M.A. On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces. Fixed Point Theory Appl. 2015, 2015, 160. [Google Scholar] [CrossRef] [Green Version]
- Dehaish, B.A.B.; Khamsi, M.A. Mann iteration process for monotone nonexpansive mappings. Fixed Point Theory Appl. 2015, 2015, 177. [Google Scholar] [CrossRef] [Green Version]
- Dehaish, B.A.B.; Khamsi, M.A. Browder and Göhde fixed point theorem for monotone nonexpansive mappings. Fixed Point Theory Appl. 2016, 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- Bachar, M.; Khamsi, M.A. Properties of fixed point sets of monotone nonexpansive mappings in Banach spaces. Numer. Func. Anal. Opt. 2016, 37, 277–283. [Google Scholar] [CrossRef]
- Bachar, M.; Khamsi, M.A. Recent contributions to fixed point theory of monotone mappings. J. Fixed Point Theory Appl. 2017, 19, 1953–1976. [Google Scholar] [CrossRef]
- Alfuraidan, M.R.; Khamsi, M.A. A fixed point theorem for monotone asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 2018, 146, 2451–2456. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Zaslavski, A.J. Well-posedness of fixed point problems for monotone nonexpansive mappings. Linear Nonlinear Anal. 2018, 4, 1–8. [Google Scholar]
- Lipschutz, S. Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems. Filomat 2017, 31, 4421–4439. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, H.H. Banach Lattices and pOsitive Operators; Die Grundlehren Der Mathematischen Wissenschaften, Band 215; Springer: New York, NY, USA, 1974. [Google Scholar]
- Smulian, V. On the principle of inclusion in the space of the type (B). Mat. Sb. 1939, 47, 317–328. [Google Scholar]
- Song, Y.; Kumam, P.; Cho, Y.J. Fixed Point Theorems Iterative Approx. Monotone Nonexpansive Mappings Ordered Banach Spaces. Fixed Point Theory Appl. 2016, 2016, 73. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, A.; Imdad, M.; Asim, M.; Sessa, S. A Relation-Theoretic Formulation of Browder–Göhde Fixed Point Theorem. Axioms 2021, 10, 285. https://doi.org/10.3390/axioms10040285
Alam A, Imdad M, Asim M, Sessa S. A Relation-Theoretic Formulation of Browder–Göhde Fixed Point Theorem. Axioms. 2021; 10(4):285. https://doi.org/10.3390/axioms10040285
Chicago/Turabian StyleAlam, Aftab, Mohammad Imdad, Mohammad Asim, and Salvatore Sessa. 2021. "A Relation-Theoretic Formulation of Browder–Göhde Fixed Point Theorem" Axioms 10, no. 4: 285. https://doi.org/10.3390/axioms10040285
APA StyleAlam, A., Imdad, M., Asim, M., & Sessa, S. (2021). A Relation-Theoretic Formulation of Browder–Göhde Fixed Point Theorem. Axioms, 10(4), 285. https://doi.org/10.3390/axioms10040285