Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Bäcklund Transformations for Nonlinear Equation
3.2. Applying Differential Couplings to Obtain Exact Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. The Korteweg-de Vries equation and generalizations. VI. Method for exact solutions. Commun. Pure Appl. Math. 1974, 27, 97–133. [Google Scholar] [CrossRef]
- Hayashi, M.; Shigemoto, K.; Tsukioka, T. Common Hirota form Bäcklund transformation for the unified Soliton system. J. Phys. Commun. 2020, 4, 015014. [Google Scholar] [CrossRef]
- Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192–1194. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, Y. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 2018, 264, 2633–2659. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Equations, and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Xu, G. Painleve analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Appl. Math. Lett. 2019, 97, 81–87. [Google Scholar] [CrossRef]
- Aguirre, R.; Gomes, J.F.; Retore, A.L.; Spano, N.I.; Zimerman, A.H. Recursion Operator and Bäcklund Transformation for Super mKdV Hierarchy. Quantum Theory Symmetries Lie Theory Its Appl. Phys. 2018, 1, 293–309. [Google Scholar]
- Chen, S.; Ma, W.; Lü, X. Bäcklund transformation, exact solutions, and interaction behavior of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105135. [Google Scholar] [CrossRef]
- Rasin, A.; Schiff, J. Bäcklund transformations for the Boussinesq equation and merging solitons. J. Phys. A Math. Theor. 2017, 50, 325202. [Google Scholar] [CrossRef] [Green Version]
- Redkina, T.V.; Zakinyan, R.G.; Zakinyan, A.R.; Surneva, O.B.; Yanovskaya, O.S. Bäcklund Transformations for Nonlinear Differential Equations and Systems. Axioms 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.Y.; Gao, Y.T.; Yu, X.; Meng, X.H.; Liu, Y. Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics, and electrodynamics. Wave Motion 2009, 46, 511–521. [Google Scholar] [CrossRef]
- Veerakumar, V.; Daniel, M. Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton. Math. Comput. Simul. 2003, 62, 163–169. [Google Scholar] [CrossRef]
- Song, J.F.; Hu, Y.H.; Ma, Z.Y. Bäcklund transformation and CRE solvability for the negative-order modified KdV equation. Nonlinear Dyn. 2017, 90, 575–580. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Kuznetsov, V.A. Hamiltonian formalism for nonlinear waves. Adv. Phys. Sci. 1997, 167, 1137–1168. (In Russian) [Google Scholar]
- Gulenko, V.V.; Guschin, V.V. Hamiltonov formulation of new dynamic equations. Rep. Acad. Sci. Ukr. 1994, 3, 73–77. (In Russian) [Google Scholar]
- Cheng, J. Miura and auto-Bäcklund transformations for the q-deformed KP and q-deformed modified KP hierarchies. J. Nonlinear Math. Phys. 2017, 24, 7–19. [Google Scholar] [CrossRef]
- Zabrodin, A.V. Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz. Theor. Math. Phys. 2008, 155, 74–93. [Google Scholar] [CrossRef] [Green Version]
- Tsiganov, A.V. Bäcklund transformations and divisor doubling. J. Geom. Phys. 2018, 126, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Lamb, G.L. Elements of Soliton Theory; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Pogorelov, A.V. Multivariate Monge-Ampere Equation; Science: Moscow, Russia, 1988. (In Russian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redkina, T.V.; Zakinyan, R.G.; Zakinyan, A.R.; Novikova, O.V. Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity. Axioms 2021, 10, 337. https://doi.org/10.3390/axioms10040337
Redkina TV, Zakinyan RG, Zakinyan AR, Novikova OV. Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity. Axioms. 2021; 10(4):337. https://doi.org/10.3390/axioms10040337
Chicago/Turabian StyleRedkina, Tatyana V., Robert G. Zakinyan, Arthur R. Zakinyan, and Olga V. Novikova. 2021. "Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity" Axioms 10, no. 4: 337. https://doi.org/10.3390/axioms10040337
APA StyleRedkina, T. V., Zakinyan, R. G., Zakinyan, A. R., & Novikova, O. V. (2021). Bäcklund Transformations for Liouville Equations with Exponential Nonlinearity. Axioms, 10(4), 337. https://doi.org/10.3390/axioms10040337