Generalized Rough Sets via Quantum Implications on Quantum Logic
Abstract
:1. Introduction
2. Preliminaries
2.1. Quantum Implicator
- (C1)
- , ;
- (C2)
- ;
- (C3)
- ;
- (C4)
- .
- (C5)
- iff
- (C6)
- , , and ;
- (C7)
- ;
- (C8)
- if, and only if,
- (C9)
- & is commutative, i.e., for any ;
- (C10)
- for any .
2.2. Dual Operator of Quantum Implicator
3. Rough Approximations via Sasaki Implication and Multiplication &
4. Rough Approximations via Implicator and Its Dual Operator
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Rauszer, C. An equivalence between theory of functional dependence and a fragment of intuitionistic logic. Bul. Pol. Acad. Sci. Math. 1985, 33, 571–579. [Google Scholar]
- Vakarelov, D. A modal logic for similarity relations in Pawlak knowledge representation systems. Fundam. Inform. 1991, 15, 61–79. [Google Scholar] [CrossRef]
- Vakarelov, D. Modal logics for knowledge representation systems. Theor. Comput. Sci. 1991, 90, 433–456. [Google Scholar]
- Yao, Y.Y. Constructive and algebraic methods of the theory of rough sets. Inf. Sci. 1998, 109, 21–47. [Google Scholar] [CrossRef]
- Pei, Z.; Pei, D.; Zheng, L. Topology vs. generalized rough sets. Int. J. Approx. Reason. 2011, 52, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, Z.; Skowron, A. Rough sets and boolean reasoning. Inf. Sci. 2007, 177, 41–73. [Google Scholar] [CrossRef] [Green Version]
- Qi, G.; Liu, W. Rough operations on Boolean algebras. Inf. Sci. 2005, 173, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Hua, X. Fuzzy rough set based on lattice effect algebra. J. Intell. Fuzzy Syst. 2019, 36, 29–36. [Google Scholar] [CrossRef]
- Radzikowska, A.M.; Kerre, E.E. Fuzzy rough sets based on residuated lattices. Trans. Rough Sets Lect. Notes Comput. Sci. 2004, 3135, 278–296. [Google Scholar]
- Bao, Y.; Yang, H.; She, Y. Using one axiom to characterize L-fuzzy rough approximation operators based on residuated lattices. Fuzzy Sets Syst. 2018, 336, 87–115. [Google Scholar] [CrossRef]
- Yin, Y.Q.; Huang, X.K. Fuzzy Roughness in hyperrings based on a complete residuated lattice. Int. J. Fuzzy Syst. 2010, 13, 185–194. [Google Scholar]
- Yin, Y.Q.; Zhan, J.M.; Corsini, P. Fuzzy roughness of n-ary hypergroups based on a complete residuated lattice. Neural Comput. Appl. 2011, 20, 41–57. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hu, B.Q. Fuzzy rough sets based on generalized residuated lattices. Inf. Sci. 2013, 248, 31–49. [Google Scholar] [CrossRef]
- She, Y.H.; Wang, G.J. An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput. Math. Appl. 2009, 58, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhang, W.; Yeung, D.; Tsang, E.C.C. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Inf. Sci. 2006, 176, 1829–1848. [Google Scholar]
- Liu, G.L. Generalized rough sets over fuzzy lattices. Inf. Sci. 2008, 178, 1651–1662. [Google Scholar] [CrossRef]
- Ma, L.W. Two fuzzy covering rough set models and their generalizations over fuzzy lattices. Fuzzy Sets Syst. 2016, 294, 1–17. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Feynman, R.P. Quantum mechanical computers. Found. Phys. 1986, 16, 507–531. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 1985, 400, 97–117. [Google Scholar]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE Press: Los Alamitos, CA, 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; p. 212. [Google Scholar]
- Birkhoff, G.; von Neumann, J. The logic of quantum mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Hassan, Y.F. Rough set classification based on quantum logic. J. Exp. Theor. Artif. Intell. 2017, 29, 1325–1336. [Google Scholar] [CrossRef]
- Dai, S. Topological characterizations of rough set theory based on quantum logic. New Math. Natural Comput. 2021. [Google Scholar] [CrossRef]
- Dai, S. Rough Approximation Operators on a Complete Orthomodular Lattice. Axioms 2021, 10, 164. [Google Scholar] [CrossRef]
- Pták, P.; Pulmannová, S. Orthomodular Structures as Quantum Logics; Kluwer: Dordrecht, The Netherland, 1991. [Google Scholar]
- Mittelstaedt, P. Quantum Logic; D. Reidel Publ. Co.: Dordrecht, The Netherland, 1978. [Google Scholar]
- Ying, M.S. Automata theory based on quantum logic(II). Int. J. Theor. Phys. 2000, 39, 2545–2557. [Google Scholar] [CrossRef]
- Ying, M.S. A theory of computation based on quantum logic(I). Theor. Comput. Sci. 2005, 344, 134–207. [Google Scholar] [CrossRef] [Green Version]
- Qiu, D.W. Automata theory based on quantum logic: Some characterizations. Inf. Comput. 2004, 190, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Dai, S. A note on implication operators of quantum logic. Quantum Mach. Intell. 2020, 2, 15. [Google Scholar] [CrossRef]
- Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Chiara, M.L.D. Quantum logic. In Handbook of Philosophical Logic; Gabbay, D., Guenthner, F., Eds.; Reidel: Dordrecht, The Netherland, 1986; Volume III, pp. 427–469. [Google Scholar]
- Kalmbach, G. Orthomodular lattices. In London Math Soc Monographs; Academic Press: London, UK, 1983. [Google Scholar]
- Finch, P.D. Quantum logic as an implicatiom algebra. Bull. Austral. Math. Soc. 1970, 2, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Román, L.; Rumbos, B. Quantum logic revisited. Found. Phys. 1991, 21, 727–734. [Google Scholar] [CrossRef]
- Chiara, M.L.D.; Giuntini, R.; Greechie, R. Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Dai, S. Quasi-MV algebras for complex fuzzy logic. AIMS Math. 2022, 7, 1416–1428. [Google Scholar] [CrossRef]
- Ledda, A.; Konig, M.; Paoli, F.; Giuntini, R. MV algebras and quantum computation. Stud. Logica 2006, 82, 245–270. [Google Scholar] [CrossRef]
- Giuntini, R. Quantum MV algebras. Stud. Logica 1996, 56, 393–417. [Google Scholar] [CrossRef]
- Gudder, S. Quantum Computational Logic. Int. J. Theor. Phys. 2003, 42, 39–47. [Google Scholar] [CrossRef]
- Ying, M.S. Automata Theory Based on Quantum Logic(I). Int. J. Theor. Phys. 2000, 39, 985–995. [Google Scholar]
R | x | y |
---|---|---|
x | 1 | 0 |
y | 0 | u |
R | x | y |
---|---|---|
x | u | v |
y | v | u |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S. Generalized Rough Sets via Quantum Implications on Quantum Logic. Axioms 2022, 11, 2. https://doi.org/10.3390/axioms11010002
Dai S. Generalized Rough Sets via Quantum Implications on Quantum Logic. Axioms. 2022; 11(1):2. https://doi.org/10.3390/axioms11010002
Chicago/Turabian StyleDai, Songsong. 2022. "Generalized Rough Sets via Quantum Implications on Quantum Logic" Axioms 11, no. 1: 2. https://doi.org/10.3390/axioms11010002
APA StyleDai, S. (2022). Generalized Rough Sets via Quantum Implications on Quantum Logic. Axioms, 11(1), 2. https://doi.org/10.3390/axioms11010002