A Molecular-Based Q-Tensor Hydrodynamic Theory of Smectic Liquid Crystals
Abstract
:1. Introduction
1.1. Molecular Theory
1.2. Vector Theory
1.3. Tensor Theory
2. Derivation of -Tensor Hydrodynamics for Smectic Liquid Crystals
2.1. From the Doi–Onsager Model to the New Q-Tensor Dynamical Model
2.2. Energy Dissipation Law
3. Discussion on the New -Tensor Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.G. The Physics of Liquid Crystals; Clarendon Press: Oxford, UK, 1974. [Google Scholar]
- Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659. [Google Scholar] [CrossRef]
- Zhang, P. A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit. Methods Appl. Anal. 2006, 13, 181–198. [Google Scholar]
- Han, J.; Luo, Y.; Wang, W.; Zhang, P.; Zhang, Z. From microscopic theory to macroscopic theory: Systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 2015, 215, 741–809. [Google Scholar] [CrossRef]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Forest, M.G.; Wang, Q.; Zhou, R. The weak shear kinetic phase diagram for nematic polymers. Rheol. Acta 2004, 43, 17–37. [Google Scholar] [CrossRef]
- Forest, M.G.; Wang, Q.; Zhou, R. The flow-phase diagram of Doi-Hess theory for sheared nematic polymers II: Finite shear rates. Rheol. Acta 1961, 41, 80–93. [Google Scholar] [CrossRef]
- Larson, R.G.; Öttinger, H. Effect of molecular elasticity on out-of-plane orientitations in shearing flows of liquid-crystalline polymers. Macromolecules 1991, 24, 6270–6282. [Google Scholar] [CrossRef]
- Wang, Q.; Weinan, E.; Liu, C.; Zhang, P. Kinetic theories for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential. Phys. Rev. E 2002, 65, 051504. [Google Scholar] [CrossRef]
- Marrucci, G.; Greco, F. The elastic constants of Maier-Saupe rodlike molecule nematics. Mol. Cryst. Liq. Cryst. 1991, 206, 17–30. [Google Scholar] [CrossRef]
- Wang, Q. A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline polymers of different configurations. J. Chem. Phys. 2002, 116, 9120–9136. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Zhang, Z. The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation. Comm. Pure Appl. Math. 2015, 68, 1326–1398. [Google Scholar] [CrossRef]
- Frank, F.C. On the theory of liquid crystals. Trans. Soc. Rheol. 1961, 5, 22–34. [Google Scholar]
- Oseen, C.W. The theory of liquid crystals. Trans. Faraday Soc. 1933, 29, 883–899. [Google Scholar] [CrossRef]
- De Gennes, P. Short range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst. 1971, 12, 193–214. [Google Scholar] [CrossRef]
- Chen, J.; Lubensky, T.C. Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Phys. Rev. A 1976, 14, 1202–1207. [Google Scholar] [CrossRef]
- Ericksen, J. Conservation laws for liquid crystals. Trans. Soc. Rheol. 1961, 5, 22–34. [Google Scholar] [CrossRef]
- Leslie, F.M. Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 1968, 28, 265–283. [Google Scholar] [CrossRef]
- Ahmadi, G. A continuum theory of smectic A liquid crystals. J. Rheol. 1982, 26, 535–556. [Google Scholar] [CrossRef]
- Martin, P.C.; Parodi, O.; Pershan, P.S. Unified hydrodynamic theory for crystals, liquid crystals and normal fluids. Phys. Rev. A 1972, 6, 2401–2420. [Google Scholar] [CrossRef]
- Weinan, E. Nonlinear continuum theory of smectic-A liquid crystals. Arch. Rational. Mech. Anal. 1997, 137, 343–360. [Google Scholar] [CrossRef]
- Stewart, I.W. Dynamic theory for smectic A liquid crystals. Continuum Mech. Thermodyn. 2007, 18, 343–360. [Google Scholar] [CrossRef]
- Mottram, N.J.; Newton, C. Introduction to Q-Tensor Theory; Research Report; Department of Mathematics, University of Strathclyde: Glasgow, UK, 2004; Volume 10. [Google Scholar]
- Beris, A.N.; Edwards, B.J. Thermodynamics of Flowing Systems with Internal Microstructure; Oxford Engrg, Sci. Ser. 36; Oxford University Press: Oxford, UK; New York, NY, USA, 1994. [Google Scholar]
- Qian, T.; Sheng, P. Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 1998, 58, 7475–7485. [Google Scholar] [CrossRef]
- Li, S.; Wang, W.; Zhang, P. Local posedness and small Deborah limit of a molecule-based Q-tensor system. Discrete. Contin Dyn. Syst.-B 2015, 20, 2611–2655. [Google Scholar] [CrossRef]
- Li, S.; Wang, W. Rigorous justification of the uniaxial limit from the Qian-Sheng inertial Q-tensor theory to the Ericksen-Lesile theory. SIAM J. Math. Anal. 2020, 52, 4421–4468. [Google Scholar] [CrossRef]
- Degond, P.; Frouvelle, A.; Liu, J.G. From kinetic to fluid models of liquid crystals by the moment method. Kinet. Relat. Model. 2022, 15, 417–465. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Zhang, P. Modeling and computation of liquid crystals. Acta Numer. 2021, 30, 765–851. [Google Scholar] [CrossRef]
- Ball, J.M.; Majumdar, A. Nematic liquid crystals: From Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 2010, 525, 1–11. [Google Scholar] [CrossRef]
- Mei, S.; Zhang, P. On a molecular based Q-tensor model for liquid crystals with density variations. Multiscale Model. Simul. 2015, 13, 977–1000. [Google Scholar] [CrossRef]
- Xu, J. Quasi-entropy by log-determinant covariance matrix and application to liquid crystals. Phys. Nonlinear Phenom. 2022, 435, 133308. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Li, S. A Molecular-Based Q-Tensor Hydrodynamic Theory of Smectic Liquid Crystals. Axioms 2022, 11, 495. https://doi.org/10.3390/axioms11100495
Feng X, Li S. A Molecular-Based Q-Tensor Hydrodynamic Theory of Smectic Liquid Crystals. Axioms. 2022; 11(10):495. https://doi.org/10.3390/axioms11100495
Chicago/Turabian StyleFeng, Xinxin, and Sirui Li. 2022. "A Molecular-Based Q-Tensor Hydrodynamic Theory of Smectic Liquid Crystals" Axioms 11, no. 10: 495. https://doi.org/10.3390/axioms11100495
APA StyleFeng, X., & Li, S. (2022). A Molecular-Based Q-Tensor Hydrodynamic Theory of Smectic Liquid Crystals. Axioms, 11(10), 495. https://doi.org/10.3390/axioms11100495