On (k,ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k,ψ)-Derivative and Integral Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. An Auxiliary Result
4. The Single Valued Problem
4.1. Existence of a Unique Solution
4.2. Existence Results
- , there exists such that
- ()
- ∃ a continuous, nondecreasing function and a function such that, ;
- ()
- ∃ a constant such that
5. The Multivalued Problem
- is -Carathéodory, where
- ∃ a continuous nondecreasing function and a positive continuous real valued function q such that, ,
- ∃ a constant such that
- is such that is measurable for each , where
- ∃ a function such that
6. Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: NewYork, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–154. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Torres Ledesma, C.E.; Nyamoradi, N. (k,ψ)-Hilfer variational problem. J. Elliptic Parabol. Equ. 2022. [Google Scholar] [CrossRef]
- Tariboon, J.; Samadi, A.; Ntouyas, S.K. Multi-point boundary value problems for (k,ψ)-Hilfer fractional differential equations and inclusions. Axioms 2022, 11, 110. [Google Scholar] [CrossRef]
- Debnath, P.; Konwar, N.; Radenovic, S. (Eds.) Metric Fixed Point Theory—Applications in Science, Engineering and Behavioural Sciences; Forum for Interdisciplinary Mathematics; Springer: Singapore, 2021. [Google Scholar]
- Todorcevic, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Cho, Y.J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. (Eds.) Advances in Metric Fixed Point Theory and Applications; Springer: Singapore, 2021. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 2, 179–192. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Zhang, S.Q. Existence of solution for a boundary value problem of fractional order. Acta Math. Sci. 2006, 26, 220–228. [Google Scholar] [CrossRef]
- Luca, R. On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions. Adv. Differ. Equ. 2021, 2021, 134. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; Walter De Gruyter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Covitz, H.; Nadler, S.B., Jr. Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Lecture Notes in Mathematics 580; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntouyas, S.K.; Ahmad, B.; Nuchpong, C.; Tariboon, J. On (k,ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k,ψ)-Derivative and Integral Boundary Conditions. Axioms 2022, 11, 403. https://doi.org/10.3390/axioms11080403
Ntouyas SK, Ahmad B, Nuchpong C, Tariboon J. On (k,ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k,ψ)-Derivative and Integral Boundary Conditions. Axioms. 2022; 11(8):403. https://doi.org/10.3390/axioms11080403
Chicago/Turabian StyleNtouyas, Sotiris K., Bashir Ahmad, Cholticha Nuchpong, and Jessada Tariboon. 2022. "On (k,ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k,ψ)-Derivative and Integral Boundary Conditions" Axioms 11, no. 8: 403. https://doi.org/10.3390/axioms11080403
APA StyleNtouyas, S. K., Ahmad, B., Nuchpong, C., & Tariboon, J. (2022). On (k,ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k,ψ)-Derivative and Integral Boundary Conditions. Axioms, 11(8), 403. https://doi.org/10.3390/axioms11080403