Proportional Hazard Model and Proportional Odds Model under Dependent Truncated Data
Abstract
:1. Introduction
2. Data and Model Assumptions
2.1. Dependent Truncated Data
2.2. Semisurvival Copula
2.3. Regression Model
3. The Proposed Estimation Procedures
3.1. Method 1: The Application of the Area between Two Survival Curves
3.1.1. Estimation under Cox Proportional Hazard Model
3.1.2. Estimation under the Proportional Odds Model
3.2. Method 2: The Minimization of the Norm Distance between Two Survival Curves
3.3. Estimate Variance by the Bootstrap Approach
4. Simulation Studies
5. Data Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Turnbull, B.W. The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B 1976, 38, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Efron, B.; Petrosian, V. Survival analysis of the gamma-ray burst data. J. Am. Stat. Assoc. 1994, 89, 452–462. [Google Scholar] [CrossRef]
- Lagakos, S.W.; Barraj, L.M.; Gruttola, V.D. Nonparametric analysis of truncated survival data, with application to AIDS. Biometrika 1988, 75, 515–523. [Google Scholar] [CrossRef]
- Bhattacharya, P.K.; Chernoff, H.; Yang, S.S. Nonparametric estimation of the slope of a truncated regression. Ann. Stat. 1983, 11, 505–514. [Google Scholar] [CrossRef]
- Tsui, K.L.; Jewell, N.P.; Wu, C.F.J. A nonparametric approach to the truncated regression problem. J. Am. Stat. Assoc. 1988, 83, 785–792. [Google Scholar] [CrossRef]
- Alioum, A.; Commenges, D. A proportional hazards model for arbitrarily censored and truncated Data. Biometrics 1996, 52, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, D.M.; Moore, D.F.; Schoenfeld, D.A. A proportional hazards model for truncated AIDS data. Biometrics 1993, 49, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Paik, M.C.; Jang, J.; Cheung, Y.K.; Willey, J.; Elkind, S.V.; Sacco, R.L. Cox proportional hazards models with left truncation and time-varying coefficient: Application of age at event as outcome in cohort studies. Biom. J. 2017, 59, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.Y. Testing the assumption of independence of truncation time and failure time. Biometrika 1990, 77, 169–177. [Google Scholar] [CrossRef]
- Emura, T.; Wang, W. Semiparametric inference for an accelerated failure time model with dependent truncation. Ann. Inst. Stat. Math. 2016, 68, 1073–1094. [Google Scholar] [CrossRef]
- Rennert, L.; Xie, S.X. Cox regression model under dependent truncation. Biometrics 2022, 78, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.S.; Hsu, H. Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data. Comput. Stat. Data Anal. 2020, 144, 106862. [Google Scholar] [CrossRef]
- Chaieb, L.L.; Rivest, L.P.; Abdous, B. Estimating survival under a dependent truncation. Biometrika 2006, 93, 655–669. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Wang, W.; Ding, A. Regression analysis based on semi-competing risks data. J. R. Stat. Soc. Ser. (Stat. Methodol.) 2008, 70, 3–20. [Google Scholar]
- Hsieh, J.J.; Lai, Y.H. Proportional hazard model and proportional odds model under dependent current status data. Master’s Thesis, National Chung Cheng University, Chia-Yi, Taiwan, 2019. [Google Scholar]
- Hyde, J. Testing survival under right-censoring and left-truncation. Biometrika 1977, 64, 225–230. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Lawless, J.F. Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS. J. Am. Stat. Assoc. 1989, 84, 360–372. [Google Scholar] [CrossRef]
- Genest, C.; Rivest, L.P. Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 1993, 88, 1034–1043. [Google Scholar] [CrossRef]
- Lai, T.L.; Ying, Z. Estimating a distribution function with truncated and censored data. Ann. Stat. 1991, 19, 417–442. [Google Scholar] [CrossRef]
- Shen, P.S. A class of rank-based test for left-truncated and right-censored data. Ann. Inst. Stat. Math. 2009, 61, 461–476. [Google Scholar] [CrossRef]
Method 1 | Method 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | |
100 | Clayton | PH | −0.0323 | 0.5006 | 0.4864 | 0.2516 | 0.954 | −0.0261 | 0.5694 | 0.5568 | 0.3249 | 0.952 |
PO | 0.0257 | 0.6575 | 0.7026 | 0.4329 | 0.948 | 0.0174 | 0.6785 | 0.7195 | 0.4607 | 0.944 | ||
200 | Clayton | PH | −0.0276 | 0.2804 | 0.2882 | 0.0794 | 0.946 | −0.0252 | 0.3196 | 0.3340 | 0.1028 | 0.952 |
PO | −0.0150 | 0.4551 | 0.5097 | 0.2073 | 0.972 | −0.0172 | 0.4702 | 0.5218 | 0.2214 | 0.960 | ||
100 | Gumbel | PH | −0.0297 | 0.2818 | 0.2960 | 0.0803 | 0.968 | −0.0356 | 0.3564 | 0.3726 | 0.1283 | 0.964 |
PO | −0.0293 | 0.4646 | 0.4663 | 0.2167 | 0.938 | −0.0390 | 0.5089 | 0.52463 | 0.2605 | 0.948 | ||
200 | Gumbel | PH | −0.0195 | 0.2094 | 0.2013 | 0.0442 | 0.950 | −0.0264 | 0.2562 | 0.2507 | 0.0663 | 0.948 |
PO | −0.0059 | 0.3497 | 0.3423 | 0.1223 | 0.950 | −0.0029 | 0.3787 | 0.3796 | 0.1434 | 0.968 |
Method 1 | Method 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | ||
100 | Frank | 0.3 | PH | 0.0268 | 0.3638 | 0.3293 | 0.1330 | 0.932 | 0.0326 | 0.4388 | 0.4021 | 0.1936 | 0.926 |
PO | −0.0520 | 0.6403 | 0.5925 | 0.4127 | 0.930 | −0.0528 | 0.6542 | 0.6024 | 0.4308 | 0.930 | |||
0.5 | PH | 0.0318 | 0.2944 | 0.2997 | 0.0877 | 0.950 | 0.0352 | 0.3392 | 0.3513 | 0.1163 | 0.956 | ||
PO | −0.0203 | 0.5456 | 0.5455 | 0.2981 | 0.952 | −0.0232 | 0.5226 | 0.5214 | 0.2737 | 0.954 | |||
0.7 | PH | −0.0353 | 0.2007 | 0.2318 | 0.0415 | 0.970 | −0.0355 | 0.2219 | 0.2589 | 0.0505 | 0.980 | ||
PO | 0.0418 | 0.3286 | 0.3544 | 0.1097 | 0.968 | 0.0324 | 0.2879 | 0.3156 | 0.0839 | 0.974 | |||
200 | Frank | 0.3 | PH | 0.0185 | 0.2796 | 0.2692 | 0.0785 | 0.938 | 0.0200 | 0.3434 | 0.3268 | 0.1183 | 0.942 |
PO | 0.0390 | 0.5467 | 0.4942 | 0.3004 | 0.932 | 0.0418 | 0.5544 | 0.5023 | 0.3091 | 0.936 | |||
0.5 | PH | −0.0011 | 0.2285 | 0.2466 | 0.0522 | 0.960 | 0.0005 | 0.2608 | 0.2858 | 0.0680 | 0.964 | ||
PO | 0.0187 | 0.4188 | 0.4099 | 0.1757 | 0.940 | 0.0154 | 0.3956 | 0.3881 | 0.1567 | 0.946 | |||
0.7 | PH | −0.0264 | 0.1493 | 0.1626 | 0.0230 | 0.966 | −0.0217 | 0.1661 | 0.1789 | 0.0281 | 0.966 | ||
PO | 0.0324 | 0.2133 | 0.2370 | 0.0466 | 0.972 | 0.0260 | 0.1858 | 0.2042 | 0.0352 | 0.968 |
Method 1 | Method 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | ||
100 | Clayton | PH | −0.0226 | 0.4171 | 0.3938 | 0.1745 | 0.936 | −0.0141 | 0.4803 | 0.4558 | 0.2309 | 0.940 | |
−0.0183 | 0.4027 | 0.3932 | 0.1625 | 0.936 | −0.0053 | 0.4764 | 0.4576 | 0.2269 | 0.934 | ||||
PO | −0.0414 | 0.8127 | 0.7505 | 0.6623 | 0.954 | −0.0356 | 0.8131 | 0.7544 | 0.6624 | 0.950 | |||
−0.0028 | 0.7608 | 0.7360 | 0.5788 | 0.954 | −0.0021 | 0.7749 | 0.7420 | 0.6004 | 0.946 | ||||
200 | Clayton | PH | −0.0249 | 0.3108 | 0.2855 | 0.0972 | 0.924 | −0.0266 | 0.3557 | 0.3303 | 0.1272 | 0.926 | |
−0.0303 | 0.3069 | 0.2842 | 0.0951 | 0.922 | −0.0232 | 0.3504 | 0.3273 | 0.1233 | 0.926 | ||||
PO | 0.0005 | 0.4345 | 0.4516 | 0.1888 | 0.942 | 0.0061 | 0.4484 | 0.4596 | 0.2011 | 0.934 | |||
−0.0083 | 0.4685 | 0.4459 | 0.2196 | 0.938 | −0.0023 | 0.4861 | 0.4559 | 0.2363 | 0.932 | ||||
100 | Gumbel | PH | −0.0208 | 0.3037 | 0.2725 | 0.0927 | 0.912 | −0.0284 | 0.3723 | 0.3368 | 0.1394 | 0.908 | |
−0.0508 | 0.3005 | 0.2803 | 0.0929 | 0.932 | −0.0578 | 0.3693 | 0.3453 | 0.1397 | 0.930 | ||||
PO | −0.0112 | 0.5248 | 0.4581 | 0.2755 | 0.944 | −0.0014 | 0.5666 | 0.4924 | 0.3210 | 0.930 | |||
−0.0332 | 0.5089 | 0.4691 | 0.2601 | 0.940 | −0.0219 | 0.5511 | 0.5065 | 0.3041 | 0.946 | ||||
200 | Gumbel | PH | −0.0255 | 0.2216 | 0.1968 | 0.0497 | 0.926 | −0.0359 | 0.2705 | 0.2431 | 0.0744 | 0.922 | |
−0.0316 | 0.2181 | 0.2026 | 0.0485 | 0.950 | −0.0354 | 0.2646 | 0.2501 | 0.0713 | 0.950 | ||||
PO | 0.0038 | 0.3387 | 0.3220 | 0.1147 | 0.944 | 0.0068 | 0.3616 | 0.3471 | 0.1308 | 0.940 | |||
−0.0116 | 0.3315 | 0.3242 | 0.1100 | 0.942 | −0.0047 | 0.3635 | 0.3501 | 0.1321 | 0.944 |
Method 1 | Method 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | |||
100 | Frank | 0.3 | PH | −0.0053 | 0.3374 | 0.3128 | 0.1139 | 0.934 | −0.0128 | 0.4117 | 0.3778 | 0.1697 | 0.920 | |
−0.0316 | 0.3553 | 0.3303 | 0.1273 | 0.928 | −0.0378 | 0.4325 | 0.3974 | 0.1885 | 0.922 | |||||
PO | 0.0028 | 0.6187 | 0.5897 | 0.3828 | 0.938 | −0.0001 | 0.6247 | 0.5961 | 0.3902 | 0.940 | ||||
0.0081 | 0.6018 | 0.5953 | 0.3622 | 0.948 | 0.0047 | 0.6222 | 0.6027 | 0.3872 | 0.950 | |||||
0.5 | PH | 0.0253 | 0.3035 | 0.2893 | 0.0927 | 0.934 | 0.0314 | 0.3556 | 0.3414 | 0.1274 | 0.926 | |||
0.0154 | 0.3162 | 0.2972 | 0.1002 | 0.928 | 0.0225 | 0.3708 | 0.3484 | 0.1380 | 0.934 | |||||
PO | −0.0125 | 0.5091 | 0.5391 | 0.2593 | 0.956 | −0.0227 | 0.4951 | 0.5116 | 0.2457 | 0.952 | ||||
0.0378 | 0.5161 | 0.5305 | 0.2677 | 0.948 | 0.0275 | 0.4890 | 0.5026 | 0.2399 | 0.952 | |||||
0.7 | PH | −0.0066 | 0.2002 | 0.2112 | 0.0401 | 0.968 | −0.0061 | 0.2263 | 0.2372 | 0.0513 | 0.962 | |||
−0.0315 | 0.2008 | 0.2143 | 0.0413 | 0.956 | −0.0289 | 0.2178 | 0.2390 | 0.0483 | 0.970 | |||||
PO | 0.0319 | 0.3202 | 0.3532 | 0.1035 | 0.964 | 0.0263 | 0.2799 | 0.3109 | 0.0790 | 0.964 | ||||
0.0263 | 0.3248 | 0.3520 | 0.1062 | 0.974 | 0.0181 | 0.2875 | 0.3106 | 0.0830 | 0.972 | |||||
200 | Frank | 0.3 | PH | 0.0067 | 0.3022 | 0.2680 | 0.0914 | 0.936 | 0.0055 | 0.3685 | 0.3275 | 0.1358 | 0.934 | |
−0.0126 | 0.2889 | 0.2821 | 0.0836 | 0.938 | −0.0127 | 0.3514 | 0.3420 | 0.1236 | 0.944 | |||||
PO | −0.0073 | 0.5046 | 0.4683 | 0.2547 | 0.930 | −0.0001 | 0.5130 | 0.4746 | 0.2632 | 0.924 | ||||
0.0117 | 0.5025 | 0.4675 | 0.2527 | 0.942 | 0.0205 | 0.5060 | 0.4747 | 0.2565 | 0.936 | |||||
0.5 | PH | −0.0028 | 0.2629 | 0.2427 | 0.0691 | 0.924 | −0.0061 | 0.3093 | 0.2840 | 0.0957 | 0.918 | |||
0.0056 | 0.2570 | 0.2467 | 0.0661 | 0.926 | 0.0100 | 0.3011 | 0.2862 | 0.0908 | 0.928 | |||||
PO | 0.0181 | 0.4210 | 0.4274 | 0.1776 | 0.956 | 0.0158 | 0.3943 | 0.4027 | 0.1557 | 0.960 | ||||
0.0376 | 0.4061 | 0.4219 | 0.1663 | 0.942 | 0.0358 | 0.3764 | 0.3975 | 0.1430 | 0.958 | |||||
0.7 | PH | −0.0171 | 0.1461 | 0.1498 | 0.0216 | 0.964 | −0.0198 | 0.1608 | 0.1671 | 0.0263 | 0.960 | |||
−0.0186 | 0.1433 | 0.1507 | 0.0209 | 0.966 | −0.0162 | 0.1560 | 0.1660 | 0.0246 | 0.966 | |||||
PO | 0.0254 | 0.2164 | 0.2359 | 0.0475 | 0.976 | 0.0273 | 0.1872 | 0.2022 | 0.0358 | 0.972 | ||||
0.0234 | 0.2345 | 0.2361 | 0.0555 | 0.962 | 0.0184 | 0.1942 | 0.2022 | 0.0380 | 0.972 |
Method 1 | Method 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | |
100 | Clayton | PH | 0.0382 | 0.4689 | 0.5291 | 0.2213 | 0.986 | 0.0079 | 0.4659 | 0.5295 | 0.2171 | 0.984 |
PO | 0.0372 | 0.9020 | 0.9787 | 0.8149 | 0.968 | 0.0267 | 0.7170 | 0.8316 | 0.5148 | 0.972 | ||
200 | Clayton | PH | 0.0194 | 0.2902 | 0.2891 | 0.0846 | 0.956 | −0.0031 | 0.2557 | 0.2665 | 0.0654 | 0.956 |
PO | 0.0259 | 0.5889 | 0.5695 | 0.3475 | 0.930 | 0.0147 | 0.4225 | 0.4139 | 0.1787 | 0.940 | ||
100 | Gumbel | PH | 0.0457 | 0.4382 | 0.4152 | 0.1941 | 0.950 | 0.0239 | 0.3944 | 0.3892 | 0.1561 | 0.950 |
PO | 0.0480 | 0.8515 | 0.7571 | 0.7273 | 0.934 | 0.0146 | 0.5982 | 0.5819 | 0.3581 | 0.958 | ||
200 | Gumbel | PH | 0.0536 | 0.3378 | 0.3029 | 0.1170 | 0.952 | 0.0261 | 0.2859 | 0.2699 | 0.0824 | 0.936 |
PO | 0.0113 | 0.6745 | 0.6106 | 0.4551 | 0.932 | −0.0106 | 0.4164 | 0.4199 | 0.1735 | 0.960 |
Method 1 | Method 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | ||
100 | Frank | 0.3 | PH | 0.0331 | 0.4416 | 0.4570 | 0.1961 | 0.950 | 0.0179 | 0.4779 | 0.4874 | 0.2287 | 0.948 |
PO | −0.0249 | 0.7691 | 0.8107 | 0.5922 | 0.948 | −0.0349 | 0.7033 | 0.7170 | 0.4959 | 0.946 | |||
0.5 | PH | −0.0063 | 0.3680 | 0.4048 | 0.1355 | 0.976 | −0.0397 | 0.4215 | 0.4567 | 0.1793 | 0.970 | ||
PO | −0.0014 | 0.6859 | 0.7133 | 0.4705 | 0.966 | −0.0064 | 0.6465 | 0.6621 | 0.4180 | 0.964 | |||
0.7 | PH | 0.0016 | 0.2539 | 0.3195 | 0.0644 | 0.982 | −0.0587 | 0.2892 | 0.3811 | 0.0871 | 0.982 | ||
PO | 0.0036 | 0.4650 | 0.5175 | 0.2163 | 0.972 | −0.0005 | 0.4304 | 0.4919 | 0.1853 | 0.974 | |||
200 | Frank | 0.3 | PH | 0.0253 | 0.3209 | 0.3309 | 0.1036 | 0.958 | 0.0031 | 0.3431 | 0.3553 | 0.1177 | 0.950 |
PO | −0.0006 | 0.6926 | 0.6527 | 0.4797 | 0.934 | −0.0176 | 0.5938 | 0.5633 | 0.3530 | 0.926 | |||
0.5 | PH | 0.0138 | 0.2236 | 0.2197 | 0.0502 | 0.934 | −0.0115 | 0.2354 | 0.2344 | 0.0556 | 0.930 | ||
PO | −0.0058 | 0.5275 | 0.5259 | 0.2783 | 0.938 | 0.0070 | 0.4916 | 0.4753 | 0.2417 | 0.938 | |||
0.7 | PH | −0.0006 | 0.1581 | 0.1895 | 0.0250 | 0.980 | −0.0305 | 0.1672 | 0.2053 | 0.0289 | 0.972 | ||
PO | 0.0060 | 0.3061 | 0.2943 | 0.0938 | 0.930 | 0.0143 | 0.2640 | 0.2663 | 0.0699 | 0.928 |
Method 1 | Method 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | ||
100 | Clayton | PH | 0.0396 | 0.4900 | 0.5181 | 0.2417 | 0.986 | 0.0080 | 0.4824 | 0.5225 | 0.2328 | 0.988 | |
0.0383 | 0.4941 | 0.5204 | 0.2456 | 0.974 | 0.0114 | 0.4931 | 0.5187 | 0.2432 | 0.974 | ||||
PO | −0.0181 | 0.9071 | 0.9843 | 0.8231 | 0.968 | −0.0186 | 0.6848 | 0.8196 | 0.4693 | 0.984 | |||
0.0140 | 0.9838 | 1.0189 | 0.9680 | 0.968 | 0.0061 | 0.7876 | 0.8355 | 0.6203 | 0.980 | ||||
200 | Clayton | PH | 0.0358 | 0.3247 | 0.3144 | 0.1067 | 0.956 | 0.0041 | 0.2893 | 0.2887 | 0.0837 | 0.952 | |
0.0290 | 0.3192 | 0.3114 | 0.1027 | 0.940 | 0.0028 | 0.2922 | 0.2885 | 0.0854 | 0.938 | ||||
PO | −0.0069 | 0.6139 | 0.5803 | 0.3769 | 0.940 | 0.0027 | 0.4234 | 0.4186 | 0.1793 | 0.944 | |||
−0.0257 | 0.6227 | 0.5764 | 0.3884 | 0.922 | −0.0314 | 0.4180 | 0.4144 | 0.1757 | 0.930 | ||||
100 | Gumbel | PH | 0.0136 | 0.4293 | 0.4003 | 0.1845 | 0.932 | −0.0104 | 0.3868 | 0.3749 | 0.1497 | 0.940 | |
0.0429 | 0.4388 | 0.4090 | 0.1944 | 0.936 | 0.0133 | 0.3938 | 0.3821 | 0.1552 | 0.946 | ||||
PO | −0.0274 | 0.8631 | 0.7659 | 0.7457 | 0.920 | −0.0197 | 0.5823 | 0.5648 | 0.3395 | 0.942 | |||
0.0254 | 0.8361 | 0.7653 | 0.6997 | 0.942 | 0.0097 | 0.5812 | 0.5842 | 0.3379 | 0.964 | ||||
200 | Gumbel | PH | 0.0105 | 0.3103 | 0.2964 | 0.0964 | 0.956 | −0.0070 | 0.2611 | 0.2655 | 0.0682 | 0.960 | |
0.0033 | 0.2987 | 0.2926 | 0.0892 | 0.962 | −0.0126 | 0.2511 | 0.2633 | 0.0632 | 0.958 | ||||
PO | 0.0035 | 0.7022 | 0.6143 | 0.4931 | 0.940 | 0.0023 | 0.4135 | 0.4072 | 0.1710 | 0.952 | |||
0.0396 | 0.7082 | 0.6343 | 0.5031 | 0.940 | 0.0049 | 0.4238 | 0.4273 | 0.1797 | 0.962 |
Method 1 | Method 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | Bias | EmpSd | AveSd | MSE | CP | Bias | EmpSd | AveSd | MSE | CP | |||
100 | Frank | 0.3 | PH | 0.0220 | 0.4441 | 0.4629 | 0.1977 | 0.950 | −0.0104 | 0.4907 | 0.4964 | 0.2409 | 0.950 | |
0.0037 | 0.4408 | 0.4589 | 0.1943 | 0.954 | −0.0261 | 0.4749 | 0.4946 | 0.2262 | 0.956 | |||||
PO | −0.0112 | 0.8613 | 0.8231 | 0.7420 | 0.948 | −0.0197 | 0.7354 | 0.7079 | 0.5412 | 0.944 | ||||
0.0080 | 0.8313 | 0.8118 | 0.6911 | 0.952 | −0.0015 | 0.7363 | 0.7093 | 0.5421 | 0.940 | |||||
0.5 | PH | −0.0078 | 0.3374 | 0.3986 | 0.1139 | 0.974 | −0.0382 | 0.3856 | 0.4567 | 0.1501 | 0.972 | |||
−0.0176 | 0.3460 | 0.3982 | 0.1201 | 0.974 | −0.0502 | 0.3854 | 0.4500 | 0.1511 | 0.970 | |||||
PO | −0.0484 | 0.7556 | 0.7170 | 0.5733 | 0.930 | −0.0165 | 0.7168 | 0.6674 | 0.5141 | 0.940 | ||||
−0.0216 | 0.7357 | 0.7159 | 0.5418 | 0.938 | −0.0212 | 0.6886 | 0.6607 | 0.4746 | 0.940 | |||||
0.7 | PH | −0.0093 | 0.2472 | 0.3085 | 0.0612 | 0.974 | −0.0541 | 0.2935 | 0.3706 | 0.0891 | 0.980 | |||
−0.0064 | 0.2447 | 0.3103 | 0.0599 | 0.980 | −0.0577 | 0.2891 | 0.3684 | 0.0869 | 0.984 | |||||
PO | −0.0490 | 0.4702 | 0.5188 | 0.2234 | 0.966 | −0.0310 | 0.4429 | 0.4926 | 0.1971 | 0.968 | ||||
−0.0505 | 0.5325 | 0.5164 | 0.2861 | 0.944 | −0.0425 | 0.4922 | 0.4915 | 0.2441 | 0.952 | |||||
200 | Frank | 0.3 | PH | 0.0121 | 0.3128 | 0.3122 | 0.0980 | 0.958 | −0.0042 | 0.3419 | 0.3370 | 0.1169 | 0.940 | |
0.0258 | 0.3091 | 0.3164 | 0.0962 | 0.948 | 0.0052 | 0.3300 | 0.3389 | 0.1089 | 0.948 | |||||
PO | 0.0021 | 0.7255 | 0.6964 | 0.5264 | 0.950 | 0.0093 | 0.6142 | 0.5952 | 0.3773 | 0.938 | ||||
−0.0130 | 0.7226 | 0.6886 | 0.5223 | 0.944 | −0.0160 | 0.6081 | 0.5898 | 0.3700 | 0.946 | |||||
0.5 | PH | 0.0217 | 0.2080 | 0.2108 | 0.0437 | 0.940 | 0.0013 | 0.2284 | 0.2279 | 0.0522 | 0.934 | |||
0.0082 | 0.2068 | 0.2104 | 0.0428 | 0.938 | −0.0162 | 0.2212 | 0.2267 | 0.0492 | 0.940 | |||||
PO | 0.0357 | 0.5554 | 0.5235 | 0.3098 | 0.926 | 0.0234 | 0.4832 | 0.4698 | 0.2340 | 0.932 | ||||
0.0418 | 0.5151 | 0.5183 | 0.2671 | 0.948 | 0.0151 | 0.4612 | 0.4637 | 0.2129 | 0.940 | |||||
0.7 | PH | 0.0047 | 0.1633 | 0.1881 | 0.0267 | 0.974 | −0.0288 | 0.1747 | 0.2007 | 0.0314 | 0.964 | |||
0.0012 | 0.1562 | 0.1845 | 0.0244 | 0.974 | −0.0286 | 0.1722 | 0.1989 | 0.0305 | 0.964 | |||||
PO | 0.0014 | 0.3730 | 0.3817 | 0.1391 | 0.942 | 0.0036 | 0.3279 | 0.3436 | 0.1075 | 0.948 | ||||
0.0159 | 0.3708 | 0.3827 | 0.1377 | 0.948 | 0.0119 | 0.3114 | 0.3439 | 0.0971 | 0.950 |
Method 1 | Method 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | SD | 95% C. I | DR | PV | SD | 95% C. I | DR | PV | ||||
Frank | PH | 0.3211 | 0.4908 | −0.6408 | 1.2831 | 0.1651 | 0.669 | 0.1749 | 0.4310 | −0.6699 | 1.0197 | 0.1651 | 0.659 |
PO | 0.5155 | 0.6694 | −0.7965 | 1.8275 | 0.1695 | 0.538 | 0.3011 | 0.5881 | −0.8516 | 1.4538 | 0.1695 | 0.553 |
Method 1 | Method 2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copula | Model | SD | 95% C. I | DR | PV | SD | 95% C. I | DR | PV | |||||
Frank | PH | −1.0065 | 0.4244 | −1.8383 | −0.1746 | −1.2322 | 0.4709 | −2.1552 | −0.3092 | |||||
−1.1941 | 0.3715 | −1.9222 | −0.4659 | 0.2661 | 0.823 | −1.3928 | 0.4052 | −2.1870 | −0.5986 | 0.3488 | 0.728 | |||
0.1876 | 0.4918 | −0.7763 | 1.1515 | 0.1606 | 0.5246 | −0.8676 | 1.1888 | |||||||
PO | −1.9358 | 0.7267 | −3.3601 | −0.5115 | −2.1772 | 0.7509 | −3.6489 | −0.7054 | ||||||
−2.2260 | 0.6684 | −3.5361 | −0.9159 | 0.2254 | 0.918 | −2.3858 | 0.7037 | −3.7651 | −1.0065 | 0.2628 | 0.804 | |||
0.2902 | 0.7392 | −1.1586 | 1.7390 | 0.2086 | 0.7053 | −1.1737 | 1.5909 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, J.-J.; Chen, Y.-J. Proportional Hazard Model and Proportional Odds Model under Dependent Truncated Data. Axioms 2022, 11, 521. https://doi.org/10.3390/axioms11100521
Hsieh J-J, Chen Y-J. Proportional Hazard Model and Proportional Odds Model under Dependent Truncated Data. Axioms. 2022; 11(10):521. https://doi.org/10.3390/axioms11100521
Chicago/Turabian StyleHsieh, Jin-Jian, and Yun-Jhu Chen. 2022. "Proportional Hazard Model and Proportional Odds Model under Dependent Truncated Data" Axioms 11, no. 10: 521. https://doi.org/10.3390/axioms11100521
APA StyleHsieh, J. -J., & Chen, Y. -J. (2022). Proportional Hazard Model and Proportional Odds Model under Dependent Truncated Data. Axioms, 11(10), 521. https://doi.org/10.3390/axioms11100521