Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator
Abstract
:1. Introduction
2. Preliminaries
- (H1)
- The function fulfills the requirement and also let be one —progressively measurable process.
- (H2)
- (i) is progressively measurable,(ii) is continuous, a.e.,(iii) and(iv) ,(v) ,(vi) .
- (H3)
- (i) is just a valid convex function,(ii) .
- (H4)
- (i) ,(ii) ,(iii) , here .
- (H5)
- Every H-valued square integrable martingale with filtering has a continuous version.
3. The Existence and Uniqueness of the Solution
4. Examples
- (i)
- is a function what proper, convex as well as 1.s.c.,
- (ii)
- , ,
- (iii)
- ,
- (iv)
- .
- (a)
- ,
- (b)
- ,
- (c)
- ,
- (d)
- .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 1990, 14, 55–61. [Google Scholar] [CrossRef]
- El Karoui, N.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Hamadene, S.; Lepeltier, J.P. Backward equations, stochastic control and zero-sum stochastic differential games. Stochastics 1995, 54, 221–231. [Google Scholar] [CrossRef]
- Peng, S. The Backward Stochastic Differential Equation and Its Application. Adv. Math.(China) 1997, 26, 97–112. [Google Scholar]
- Peng, S. Nonlinear Expectations, Nonlinear Evaluations and Risk Measures. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2004; pp. 165–253. [Google Scholar] [CrossRef]
- Ren, Y.; Xia, N. Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition. Stoch. Anal. Appl. 2006, 24, 1013–1033. [Google Scholar] [CrossRef]
- Luo, M.; Fečkan, M.; Wang, J.-R.; O’Regan, D. g-Expectation for Conformable Backward Stochastic Differential Equations. Axioms 2022, 11, 75. [Google Scholar] [CrossRef]
- Pardoux, E.; Răşcanu, A. Backward stochastic differential equations with subdifferential operator and related variational inequalities. Stochastic Process. Appl. 1998, 76, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Pardoux, E.; Răşcanu, A. Backward stochastic variational inequalities. Stochastics 1999, 67, 159–167. [Google Scholar] [CrossRef]
- Diomande, B.; Maticiuc, L. Multivalued backward stochastic differential equations with time delayed generators. Open Math. 2014, 12, 1624–1637. [Google Scholar] [CrossRef] [Green Version]
- Maticiuc, L.; Rotenstein, E. Numerical schemes for multivalued backward stochastic differential systems. Cent. Eur. J. Math. 2012, 10, 693–702. [Google Scholar] [CrossRef]
- Boufoussi, B.; Casteren, J.; Mrhardy, N. Generalized backward doubly stochastic differential equations and SPDEs with nonlinear Neumann boundary conditions. Bernoulli 2007, 13, 423–446. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Yu, J. Anticipated generalized backward doubly stochastic differential equations. Symmetry 2022, 14, 114. [Google Scholar] [CrossRef]
- Yang, F.; Ren, Y.; Hu, L. Multi-valued backward stochastic differential equations driven by G-Brownian motion and its applications. Math. Methods Appl. Sci. 2017, 40, 4696–4708. [Google Scholar] [CrossRef]
- Briand, P.; Delyon, B.; Hu, Y.; Pardoux, E.; Stoica, L. Lp solutions of backward stochastic differential equations. Stochastic Process. Appl. 2003, 108, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.J. Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators. Stat. Probab. Lett. 2016, 109, 7–15. [Google Scholar] [CrossRef]
- Bahlali, K. Existence and uniqueness of solutions for BSDEs with locally Lipschitz coefficient. Electron. Commun. Probab. 2002, 7, 169–179. [Google Scholar] [CrossRef]
- Maticiuc, L.; Răşcanu, A. Backward stochastic variational inequalities on random interval. Bernoulli. 2015, 21, 1166–1199. [Google Scholar] [CrossRef] [Green Version]
- Răşcanu, A. Lp-variational solution of backward stochastic differential equation driven by subdifferential operators on a deterministic interval time. arXiv 2018, arXiv:1810.11247. [Google Scholar]
- Hamaguchi, Y. Bsdes driven by cylindrical martingales with application to approximate hedging in bond markets. Jpn. J. Ind. Appl. Math. 2021, 38, 425–453. [Google Scholar] [CrossRef]
- Al-Hussein, A. Backward stochastic partial differential equations driven by infinite-dimensional martingales and applications. Stochastics 2009, 81, 601–626. [Google Scholar] [CrossRef] [Green Version]
- Nie, T.Y. Forward-backward stochastic differential equation with subdifferential operator and associated variational inequality. Sci. China 2015, 58, 729–748. [Google Scholar] [CrossRef]
- Al-Hussein, A. Bsdes driven by infinite dimensional martingales and their applications to stochastic optimal control. Random Oper. Stoch. Equ. 2011, 19, 45–61. [Google Scholar] [CrossRef]
- Barbu, V. Nonlinear Semigroups and Differential Equations in Banach Spaces, 1st ed.; Editura Academiei: Berlin, Germany, 1976; ISBN 978-90-286-0205-2. [Google Scholar]
- Gegout-Petit, A.; Pardoux, E. Equations différentielles stochastiques rétrogrades réfléchies dans un convexe. Stochastics 1996, 57, 111–128. [Google Scholar] [CrossRef]
- Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces, 1st ed.; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-5542-5. [Google Scholar]
- Yu, B.; Xing, X.; Sudjianto, A. Deep-learning based numerical BSDE method for barrier options. arXiv 2019, arXiv:1904.05921. [Google Scholar] [CrossRef] [Green Version]
- EW, H.J.; Jentzen, A. Deep Learning-Based Numerical Methods for High-Dimensional Parabolic Partial Differential Equations and Backward Stochastic Differential Equations. Commun. Math. Stat. 2017, 5, 349–380. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Tsuchida, Y.; Yamada, T. A new efficient approximation scheme for solving high-dimensional semilinear PDEs: Control variate method for Deep BSDE solver. J. Comput. Phys. 2022, 454, 110956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Ibrahim, A.I.N.; Mohamed, N.A. Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator. Axioms 2022, 11, 536. https://doi.org/10.3390/axioms11100536
Zhang P, Ibrahim AIN, Mohamed NA. Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator. Axioms. 2022; 11(10):536. https://doi.org/10.3390/axioms11100536
Chicago/Turabian StyleZhang, Pei, Adriana Irawati Nur Ibrahim, and Nur Anisah Mohamed. 2022. "Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator" Axioms 11, no. 10: 536. https://doi.org/10.3390/axioms11100536
APA StyleZhang, P., Ibrahim, A. I. N., & Mohamed, N. A. (2022). Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator. Axioms, 11(10), 536. https://doi.org/10.3390/axioms11100536