Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials
Abstract
:1. Introduction
2. Preliminaries
2.1. The Classical Univariate Gegenbauer Polynomials
2.2. Orthogonal Polynomials on the Unit Ball
3. Main Results
3.1. The Fourier Transform of Orthogonal Polynomials on the Unit Ball
3.2. The Class of Special Functions Using the Fourier Transform of the Orthogonal Polynomials on the Unit Ball
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Deakin, M.A.B. Euler’s invention of integral transforms. Arch. Hist. Exact Sci. 1985, 33, 307–319. [Google Scholar] [CrossRef]
- Horwitz, L. Fourier transform, quantum mechanics and quantum field theory on the manifold of general relativity. Eur. Phys. J. Plus 2020, 135, 1–12. [Google Scholar] [CrossRef]
- Luchko, Y. Some schemata for applications of the integral transforms of mathematical physics. Mathematics 2019, 7, 254. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Akel, M. Computation of Fourier transform representations involving the generalized Bessel matrix polynomials. Adv. Differ. Equ. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kanemitsu, S.; Tsukada, H. Applications of the Beta-transform. Šiauliai Math. Semin. 2015, 10, 5–28. [Google Scholar]
- Davies, B. Integral Transforms and Their Applications, 3rd ed.; Texts in Applied Mathematics; Springer: New York, NY, USA, 2002; Volume 41. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of integral transforms. Vol. II. Based, in part, on notes left by Harry Bateman. In Bateman Manuscript Project; California Institute of Technology: New York, NY, USA; Toronto, ON, Canada; McGraw-Hill Book Company, Inc.: London, UK, 1954; Volume XVI, 451p. [Google Scholar]
- Jarada, F.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 2018, 1, 88–98. [Google Scholar]
- Koelink, H.T. On Jacobi and continuous Hahn polynomials. Proc. Am. Math. Soc. 1996, 124, 887–898. [Google Scholar] [CrossRef]
- Koepf, W.; Masjed-Jamei, M. Two classes of special functions using Fourier transforms of some finite classes of classical orthogonal polynomials. Proc. Am. Math. Soc. 2007, 135, 3599–3607. [Google Scholar] [CrossRef] [Green Version]
- Koornwinder, T.H. Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform. In Polynômes Orthogonaux et Applications; Part of the Lecture Notes in Mathematics Book Series 1171; Springer: Berlin/Heidelberg, Germany, 1985; pp. 174–183. [Google Scholar]
- Masjed-Jamei, M.; Koepf, W. Two classes of special functions using Fourier transforms of generalized ultraspherical and generalized Hermite polynomials. Proc. Am. Math. Soc. 2011, 140, 2053–2063. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.; Masjed-Jamei, M.; Aktaş, R. Analytical solutions of some general classes of differential and integral equations by using the Laplace and Fourier transforms. Filomat 2020, 34, 2869–2876. [Google Scholar] [CrossRef]
- Lin, H.C.; Ye, Y.C.; Huang, B.J.; Su, J.L. Bearing vibration detection and analysis using enhanced fast Fourier transform algorithm. Adv. Mech. Eng. 2016, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Smith, J. Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications, 2nd ed.; W3K Publishing: New York, NY, USA, 2007; Available online: https://ccrma.stanford.edu/~jos/st/mdft-citation.html (accessed on 12 September 2022).
- Bosi, M.; Goldberg, R. Introduction to Digital Audio Coding and Standards; Kluwer Academic Publishers: Boston, MA, USA, 2003. [Google Scholar]
- Salz, J.; Weinstein, S. Fourier transform communication system. In Proceedings of the First ACM Symposium on Problems in the Optimization of Data Communications Systems, Pine Mountain, GE, USA, 13–16 October 1969; Kosinski, W.J., Fuchs, E., Williams, L.H., Eds.; 1969; pp. 99–128. [Google Scholar]
- Kanawati, B.; Wanczek, K.P.; Schmitt-Kopplin, P. Data Processing and Automation in Fourier Transform Mass Spectrometry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 133–185. [Google Scholar] [CrossRef]
- Koornwinder, T.H. Group theoretic interpretations of Askey’s scheme of hypergeometric orthogonal polynomials. In Orthogonal Polynomials and Their Applications; Part of the Lecture Notes in Mathematics Book Series 1329; Springer: Berlin/Heidelberg, Germany, 1988; pp. 46–72. [Google Scholar]
- Atakishiyev, N.M.; Vicent, L.E.; Wolf, K.B. Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math. 1999, 107, 73–95. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Marcellán, F.; Huertas, E.J. A finite class of orthogonal functions generated by Routh–Romanovski polynomials. Complex Var. Elliptic Equ. 2012, 59, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Koepf, W. Two finite classes of orthogonal functions. Appl. Anal. 2013, 92, 2392–2403. [Google Scholar] [CrossRef] [Green Version]
- Tratnik, M.V. Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 1991, 32, 2337–2342. [Google Scholar] [CrossRef] [Green Version]
- Tratnik, M.V. Some multivariable orthogonal polynomials of the Askey tableau—Continuous families. J. Math. Phys. 1991, 32, 2065–2073. [Google Scholar] [CrossRef]
- Koelink, H.T.; Jeugt, J.V.D. Convolutions for orthogonal polynomials from Lie and quantum algebra representations. SIAM J. Math. Anal. 1998, 29, 794–822. [Google Scholar] [CrossRef]
- Güldoğan, E.; Aktaş, R.; Area, I. Some classes of special functions using Fourier transforms of some two-variable orthogonal polynomials. Integral Transform. Spec. Funct. 2020, 31, 437–470. [Google Scholar] [CrossRef]
- Güldoğan Lekesiz, E.; Aktaş, R.; Area, I. Fourier transforms of some special functions in terms of orthogonal polynomials on the simplex and continuous Hahn polynomials. Bull. Iran. Math. Soc. 2022, 1–6. [Google Scholar] [CrossRef]
- Güldoğan Lekesiz, E.; Aktaş, R.; Masjed-Jamei, M. Fourier transforms of some finite bivariate orthogonal polynomials. Symmetry 2021, 13, 452. [Google Scholar] [CrossRef]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Dunkl, C.F.; Xu, Y. Orthogonal Polynomials of Several Variables; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society (AMS): Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Rainville, E.D. Special Functions; Chelsea Publishing Comp.: Bronx, NY, USA, 1971. [Google Scholar]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions, 10th Printing, with Corrections; National Bureau of Standards; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Askey, R. Continuous Hahn polynomials. J. Phys. A Math. Gen. 1985, 18, L1017–L1019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güldoğan Lekesiz, E.; Aktaş, R.; Area, I. Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials. Axioms 2022, 11, 558. https://doi.org/10.3390/axioms11100558
Güldoğan Lekesiz E, Aktaş R, Area I. Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials. Axioms. 2022; 11(10):558. https://doi.org/10.3390/axioms11100558
Chicago/Turabian StyleGüldoğan Lekesiz, Esra, Rabia Aktaş, and Iván Area. 2022. "Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials" Axioms 11, no. 10: 558. https://doi.org/10.3390/axioms11100558
APA StyleGüldoğan Lekesiz, E., Aktaş, R., & Area, I. (2022). Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials. Axioms, 11(10), 558. https://doi.org/10.3390/axioms11100558