Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Calculus
2.2. Quantum Calculus
3. Main Results
4. Example and Application
4.1. Example
4.2. Application to Special Means
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities, 2nd ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Nawaz, Y.; Arif, M.S.; Abodayeh, K. A third-order two-stage numerical scheme for fractional Stokes problems: A comparative computational study. J. Comput. Nonlinear Dyn. 2022, 17, 101004. [Google Scholar] [CrossRef]
- Nawaz, Y.; Arif, M.S.; Abodayeh, K. A numerical scheme for fractional mixed convection flow over flat and oscillatory plates. J. Comput. Nonlinear Dyn. 2022, 17, 071008. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Ji, A.P.; Qi, F. Some inequalities of Hermite–Hadamard type for GA-convex functions with applications to means. Le Matematiche 2013, 68, 229–239. [Google Scholar]
- Mohammed, P.O. Some new Hermite–Hadamard type inequalities for MT-convex functions on differentiable coordinates. J. King Saud Univ. Sci. 2018, 30, 258–262. [Google Scholar] [CrossRef]
- Shi, D.P.; Xi, B.Y.; Qi, F. Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals of (α, m)-convex functions. Fract. Differ. Calc. 2014, 4, 31–43. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite–Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Toplu, T.; Kadakal, M.; İşcan, İ. On n-polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Park, C.; Chu, Y.M.; Saleem, M.S.; Jahangir, N.; Rehman, N. On n-polynomial p-convex functions and some related inequalities. Adv. Differ. Equ. 2020, 2020, 666. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite-Hadamard-Fejér inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
- Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Budak, H.; Pehlivan, E. Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann–Liouville fractional integrals. AIMS Math. 2020, 5, 1960–1984. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Nasir, J.; Aydi, H.; Alsamir, H. Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications. AIMS Math. 2021, 6, 13272–13290. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A.; Chu, Y.M. Estimates of quantum bounds pertaining to new q-integral identity with applications. Adv. Differ. Equ. 2020, 2020, 424. [Google Scholar] [CrossRef]
- Ujević, N. Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, H. Eridani, Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, A.M. Über die Absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert. Comment. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Cham, Switzerland, 2002. [Google Scholar]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
- Budak, H.; Khan, S.; Ali, M.A.; Chu, Y.M. Refinements of quantum Hermite–Hadamard-type inequalities. Open Math. 2021, 19, 724–734. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Akkurt, A.; Chu, Y.M. Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021, 19, 440–449. [Google Scholar] [CrossRef]
- Butt, S.I.; Budak, H.; Nonlaopon, K. New quantum Mercer estimates of Simpson–Newton-like inequalities via convexity. Symmetry 2022, 14, 1935. [Google Scholar] [CrossRef]
- Aljinović, A.A.; Kovačević, D.; Puljiz, M.; Keko, A.Ž. On Ostrowski inequality for quantum calculus. Appl. Math. Comput. 2021, 410, 126454. [Google Scholar] [CrossRef]
- Wang, X.; Khan, K.A.; Ditta, A.; Nosheen, A.; Awan, K.M.; Mabela, R.M. New developments on Ostrowski type inequalities via q-fractional integrals involving s-convex functions. J. Funct. Spaces 2022, 2022, 9742133. [Google Scholar] [CrossRef]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Mansour, Z.S.I. On fractional q-Sturm–Liouville problems. J. Fixed Point Theory Appl. 2017, 19, 1591–1612. [Google Scholar] [CrossRef] [Green Version]
- Shaimardan, S. Hardy-type inequalities quantum calculus; Lulea University of Technology, Graphic Production: Lulea, Sweden, 2018. [Google Scholar]
- Genoud, S.M.; Ovsienko, V. On q-deformed real numbers. Exp. Math. 2022, 31, 652–660. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liko, R.; Srivastava, H.M.; Mohammed, P.O.; Kashuri, A.; Al-Sarairah, E.; Sahoo, S.K.; Soliman, M.S. Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions. Axioms 2022, 11, 727. https://doi.org/10.3390/axioms11120727
Liko R, Srivastava HM, Mohammed PO, Kashuri A, Al-Sarairah E, Sahoo SK, Soliman MS. Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions. Axioms. 2022; 11(12):727. https://doi.org/10.3390/axioms11120727
Chicago/Turabian StyleLiko, Rozana, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Artion Kashuri, Eman Al-Sarairah, Soubhagya Kumar Sahoo, and Mohamed S. Soliman. 2022. "Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions" Axioms 11, no. 12: 727. https://doi.org/10.3390/axioms11120727
APA StyleLiko, R., Srivastava, H. M., Mohammed, P. O., Kashuri, A., Al-Sarairah, E., Sahoo, S. K., & Soliman, M. S. (2022). Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions. Axioms, 11(12), 727. https://doi.org/10.3390/axioms11120727