Value Creation Performance Evaluation for Taiwanese Financial Holding Companies during the Global Financial Crisis Based on a Multi-Stage NDEA Model under Uncertainty
Abstract
:1. Introduction
2. Conceptual Evaluation Framework of Financial Holding Companies in Taiwan
3. Model Development
3.1. The Concept of Network Data Envelopment Analysis
3.2. The Two-Stage NSBM Model Development under Uncertainty
4. Empirical Study and Findings
4.1. Data Collection
4.2. Model Performance Comparisons
4.3. Analyses on Value Creation Performance of Taiwanese Financial Holding Companies
4.4. Analyses on Stage Performances of Taiwanese Financial Holding Companies
4.5. Additional Analyses of Banking Profitability Performances of Taiwanese Financial Holding Companies
4.6. Overall Performance Ranking the Best FHCs from 2007 to 2012
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | |
---|---|---|---|---|---|---|
Panel A: λ = 0.5, α = 0.2, ω = 0.5 | ||||||
Hua Nan | 12,897,521 | 7,106,258 | 15,746,755 | 10,344,107 | 8,041,134 | 5,470,735 |
Fubon | 14,359,500 | 7,682,789 | 5,748,008 | 1,527,530 | 2,851,516 | 657,684 |
Cathay | 5,694,486 | 1,292,071 | 0 | 17,637 | 2,106,654 | 3,902,890 |
China Development | 520,910 | 1,243,904 | 7,575,874 | 3,109,192 | 2,415,206 | 498,376 |
E.SUN | 0 | 0 | 0 | 3,906,816 | 7,701,681 | 3,685,510 |
Yuanta | 5,713,562 | 4,463,656 | 756,035 | 0 | 1,195,219 | 2,606,518 |
Mega | 9,298,632 | 11,655,036 | 10,443,445 | 3,219,319 | 6,550,871 | 6,991,179 |
Taishin | 16,907,818 | 24,560,142 | 13,626,645 | 8,420,315 | 0 | 0 |
Shin Kong | 2,788,597 | 2,782,346 | 2,713,463 | 2,513,037 | 2,103,366 | 1,916,469 |
Waterland | 3504 | 0 | 268,489 | 111,205 | 1,378,523 | 862,201 |
SinoPac | 9,092,825 | 8,048,024 | 4,712,857 | 3,701,126 | 5,032,956 | 2,571,813 |
CTBC | 0 | 0 | 0 | 0 | 2,227,304 | 1,630,291 |
First | 8,448,223 | 9,938,501 | 15,064,050 | 7,672,200 | 8,761,744 | 9,257,096 |
Jih Sun | 6,891,985 | 7,127,581 | 9,288,868 | 898,979 | 2,337,853 | 1,338,939 |
Taiwan | - | 2,228,678 | 6,437,533 | 600,908 | 7,986,046 | 5,271,805 |
Taiwan Cooperative | - | - | - | - | 2,059,956 | 5,862,458 |
Panel B: λ = 0, α = 0.2, ω = 0.5 | ||||||
Hua Nan | 12,646,897 | 6,968,240 | 15,457,515 | 10,149,894 | 7,972,961 | 5,424,664 |
Fubon | 14,080,466 | 7,533,569 | 5,653,063 | 1,504,641 | 2,884,187 | 687,065 |
Cathay | 5,583,831 | 1,267,035 | 0 | 18,425 | 2,153,799 | 3,887,285 |
China Development | 510,788 | 1,219,804 | 7,445,411 | 3,055,568 | 2,456,356 | 520,641 |
E.SUN | 0 | 0 | 0 | 3,837,692 | 7,640,104 | 3,674,129 |
Yuanta | 5,602,537 | 4,376,990 | 758,095 | 0 | 1,248,614 | 2,616,105 |
Mega | 9,117,941 | 11,428,626 | 10,257,259 | 3,163,555 | 6,511,657 | 6,915,563 |
Taishin | 16,579,266 | 24,082,961 | 13,378,603 | 8,263,485 | 0 | 0 |
Shin Kong | 2,734,409 | 2,728,351 | 2,677,486 | 2,470,997 | 2,150,575 | 1,939,464 |
Waterland | 3436 | 0 | 280,023 | 115,838 | 1,439,817 | 900,719 |
SinoPac | 8,916,133 | 7,891,707 | 4,638,028 | 3,636,000 | 5,023,238 | 2,582,074 |
CTBC | 0 | 0 | 0 | 0 | 2,272,105 | 1,658,848 |
First | 8,284,057 | 9,745,448 | 14,788,076 | 7,529,908 | 8,679,568 | 9,137,449 |
Jih Sun | 6,758,060 | 6,989,149 | 9,125,118 | 888,304 | 2,399,235 | 1,373,157 |
Taiwan | - | 2,185,441 | 6,329,190 | 596,025 | 7,918,943 | 5,229,600 |
Taiwan Cooperative | - | - | - | - | 2,108,009 | 5,808,775 |
Panel C: λ = 1, α = 0.2, ω = 0.5 | ||||||
Hua Nan | 12,955,358 | 7,138,108 | 15,813,502 | 10,388,925 | 8,056,866 | 5,481,366 |
Fubon | 14,423,892 | 7,717,225 | 5,769,918 | 1,532,812 | 2,843,976 | 650,903 |
Cathay | 5,720,022 | 1,297,848 | 0 | 17,455 | 2,095,774 | 3,906,491 |
China Development | 523,246 | 1,249,466 | 7,605,981 | 3,121,567 | 2,405,710 | 493,238 |
E.SUN | 0 | 0 | 0 | 3,922,767 | 7,715,891 | 3,688,136 |
Yuanta | 5,739,184 | 4,483,656 | 755,560 | 0 | 1,182,898 | 2,604,306 |
Mega | 9,340,330 | 11,707,284 | 10,486,411 | 3,232,188 | 6,559,920 | 7,008,629 |
Taishin | 16,983,638 | 24,670,260 | 13,683,885 | 8,456,506 | 0 | 0 |
Shin Kong | 2,801,102 | 2,794,807 | 2,721,765 | 2,522,738 | 2,092,471 | 1,911,162 |
Waterland | 3520 | 0 | 265,828 | 110,136 | 1,364,378 | 853,313 |
SinoPac | 9,133,600 | 8,084,098 | 4,730,125 | 3,716,155 | 5,035,199 | 2,569,445 |
CTBC | 0 | 0 | 0 | 0 | 2,216,965 | 1,623,701 |
First | 8,486,107 | 9,983,052 | 15,127,736 | 7,705,037 | 8,780,708 | 9,284,707 |
Jih Sun | 6,922,891 | 7,159,527 | 9,326,657 | 901,443 | 2,328,010 | 1,331,043 |
Taiwan | - | 2,238,655 | 6,462,536 | 602,035 | 8,001,531 | 5,281,544 |
Taiwan Cooperative | - | - | - | - | 2,048,867 | 5,874,846 |
References
- Hwang, D.-Y.; Wu, W.-H. Financial system reform in Taiwan. J. Asian Econ. 2007, 18, 21–41. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Coelli, T.; Rao, D.S.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Kluwer Academic Publishers: New York, NY, USA, 1998. [Google Scholar]
- Berger, A.N.; Humphrey, D.B. Efficiency of financial institutions: International survey and directions for future research. Eur. J. Oper. Res. 1997, 98, 175–212. [Google Scholar] [CrossRef] [Green Version]
- Seiford, L.M.; Zhu, J. Profitability and Marketability of the Top 55 U.S. Commercial Banks. Manag. Sci. 1999, 45, 1270–1288. [Google Scholar] [CrossRef] [Green Version]
- Isik, I.; Hassan, M. Technical, scale and allocative efficiencies of Turkish banking industry. J. Bank. Financ. 2002, 26, 719–766. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chiu, S.-H. Using independent component analysis and network DEA to improve bank performance evaluation. Econ. Model. 2013, 32, 608–616. [Google Scholar] [CrossRef]
- Gulati, R.; Kumar, S. Assessing the impact of the global financial crisis on the profit efficiency of Indian banks. Econ. Model. 2016, 58, 167–181. [Google Scholar] [CrossRef]
- Zha, Y.; Liang, N.; Wu, M.; Bian, Y. Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach. Omega 2016, 60, 60–72. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z.; Chai, J.; Yao, L.; Wang, S.; Lev, B. Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model. Omega 2019, 85, 68–82. [Google Scholar] [CrossRef]
- Zhang, W.D.; Zhang, S.; Luo, X. Technological progress, inefficiency, and productivity growth in the US securities industry, 1980–2000. J. Bus. Res. 2006, 59, 589–594. [Google Scholar] [CrossRef]
- Tone, K.; Kweh, Q.L.; Lu, W.-M.; Ting, I.W.K. Modeling investments in the dynamic network performance of insurance companies. Omega 2019, 88, 237–247. [Google Scholar] [CrossRef]
- Wanke, P.; Barros, C.P. Efficiency drivers in Brazilian insurance: A two-stage DEA meta frontier-data mining approach. Econ. Model. 2016, 53, 8–22. [Google Scholar] [CrossRef]
- Avkiran, N.K. Opening the black box of efficiency analysis: An illustration with UAE banks. Omega 2009, 37, 930–941. [Google Scholar] [CrossRef]
- Cook, W.D.; Liang, L.; Zhu, J. Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega 2010, 38, 423–430. [Google Scholar] [CrossRef]
- Wang, K.; Huang, W.; Wu, J.; Liu, Y.-N. Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega 2014, 44, 5–20. [Google Scholar] [CrossRef]
- Galagedera, D.; Watson, J.; Premachandra, I.; Chen, Y. Modeling leakage in two-stage DEA models: An application to US mutual fund families. Omega 2016, 61, 62–77. [Google Scholar] [CrossRef]
- Fukuyama, H.; Matousek, R. Modelling bank performance: A network DEA approach. Eur. J. Oper. Res. 2017, 259, 721–732. [Google Scholar] [CrossRef]
- Chiu, S.-H.; Lin, T.-Y. Performance evaluation of taiwanese international tourist hotels: Evidence from a modified ndea model with ica technique. Technol. Econ. Dev. Econ. 2018, 24, 1560–1580. [Google Scholar] [CrossRef]
- Galagedera, D.; Roshdi, I.; Fukuyama, H.; Zhu, J. A new network DEA model for mutual fund performance appraisal: An application to U.S. equity mutual funds. Omega 2018, 77, 168–179. [Google Scholar] [CrossRef]
- Iftikhar, Y.; Wang, Z.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach. Energy 2018, 147, 197–207. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chiu, S.-H. Sustainable Performance of Low-Carbon Energy Infrastructure Investment on Regional Development: Evidence from China. Sustainability 2018, 10, 4657. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252, Erratum in Eur. J. Oper. Res 2010, 202, 308–309. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.; Liu, S.-T. Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks. Omega 2014, 47, 90–98. [Google Scholar] [CrossRef]
- Chao, C.-M.; Yu, M.-M.; Hsiung, N.-H.; Chen, L.-H. Profitability efficiency, marketability efficiency and technology gaps in Taiwan’s banking industry: Meta-frontier network data envelopment analysis. Appl. Econ. 2017, 50, 233–250. [Google Scholar] [CrossRef]
- Juo, J.-C.; Fu, T.-T.; Yu, M.-M.; Lin, Y.-H. Non-radial profit performance: An application to Taiwanese banks. Omega 2016, 65, 111–121. [Google Scholar] [CrossRef]
- Chiou, C.-C. Effects of Financial Holding Company Act on bank efficiency and productivity in Taiwan. Neurocomputing 2009, 72, 3490–3506. [Google Scholar] [CrossRef]
- Lo, S.-F.; Lu, W.-M. An integrated performance evaluation of financial holding companies in Taiwan. Eur. J. Oper. Res. 2009, 198, 341–350. [Google Scholar] [CrossRef]
- Liu, S.-T. Performance measurement of Taiwan financial holding companies: An additive efficiency decomposition approach. Expert Syst. Appl. 2011, 38, 5674–5679. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Basel Committee on Banking Supervision. Minimum Capital Requirements for Market Risk. 2016. Available online: www.bis.org/bcbs/publ/d352.pdf (accessed on 25 November 2021).
- The IFRS Foundation. IFRS 9 Financial Instruments. 2021. Available online: https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments (accessed on 25 November 2021).
- Xu, J.; Zhou, X. Fuzzy-Like Multiple Objective Decision Making; Springer: Singapore, 2011. [Google Scholar]
- Ghasemi, M.-R.; Ignatius, J.; Lozano, S.; Emrouznejad, A.; Hatami-Marbini, A. A fuzzy expected value approach under generalized data envelopment analysis. Knowl. Based Syst. 2015, 89, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Pedrycz, W.; Kuang, Y. Type-2 fuzzy multi-objective DEA model: An application to sustainable supplier evaluation. Appl. Soft. Comput. 2016, 46, 424–440. [Google Scholar] [CrossRef]
- Coelli, T.J.; Prasada Rao, D.S. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agri Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Färe, R.; Grosskopf, S. Network DEA. Socio-Econ. Plan. Sci. 2000, 34, 35–49. [Google Scholar] [CrossRef]
- Vaz, C.B.; Camanho, A.S.; Guimarães, R.C. The assessment of retailing efficiency using Network Data Envelopment Analysis. Ann. Oper. Res. 2008, 173, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Degl’Innocenti, M.; Kourtzidis, S.A.; Sevic, Z.; Tzeremes, N.G. Bank productivity growth and convergence in the European Union during the financial crisis. J. Bank. Financ. 2017, 75, 184–199. [Google Scholar] [CrossRef] [Green Version]
- Fiordelisi, F.; Ricci, O. “Whatever it takes”: An Empirical Assessment of the Value of Policy Actions in Banking. Rev. Financ. 2015, 20, 2321–2347. [Google Scholar] [CrossRef] [Green Version]
- Taskin, A.; Kumbasar, T. An Open Source Matlab/Simulink Toolbox for Interval Type-2 Fuzzy Logic Systems. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis—A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Premachandra, I.; Zhu, J.; Watson, J.; Galagedera, D. Best-performing US mutual fund families from 1993 to 2008: Evidence from a novel two-stage DEA model for efficiency decomposition. J. Bank. Financ. 2012, 36, 3302–3317. [Google Scholar] [CrossRef]
Variables | Notation | Description |
---|---|---|
Dedicated input (B), (S), (I): | ||
Average total assets (A) | The average total assets of banking (B), insurance (I), and securities (S) subsidiaries in fiscal year t, respectively. | |
Operating expense (OPE) | The sum of the operating expenses of banking (B), insurance (I), and securities (S) subsidiaries in fiscal year t, respectively. | |
Undesirable Output (B): | ||
Non-performing loan (NPL) | Problem loans for which the lending banks might not recover on time in fiscal year t, respectively. | |
Intermediate Output/Input (B–M), (S–M), (I–M): | ||
Net income (NI) | The residual income of banking (B), insurance (I), and securities (S) subsidiaries in fiscal year t, respectively, which summarizes total revenue and gains and subtracting all expenses and losses. | |
Final Output (M): | ||
Earnings per share (EPS) | EPS indicates how much money a company makes for each of its outstanding common stock in year t, which is reported on the statement of comprehensive income. | |
Variation in market value (VMV) | The difference in market value of firm between two consecutive years. Firm value is measured by the outstanding common stocks multiplied by the closing price on 31 December of specific year. |
Stage | Variables | Type | Year | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|---|
Profitability inputs | Assets | FHC | Mean | 1591.52 | 1739.57 | 1943.59 | 2050.97 | 2176.96 | 2274.37 |
S.D. | 1069.82 | 1220.24 | 1413.28 | 1476.89 | 1482.87 | 1563.77 | |||
Banking | Mean | 990.73 | 1227.66 | 1300.43 | 1373.26 | 1520.73 | 1498.62 | ||
S.D. | 656.31 | 947.39 | 1008.77 | 1044.62 | 1068.65 | 1045.35 | |||
Security | Mean | 50.05 | 45.79 | 40.45 | 45.31 | 45.76 | 49.37 | ||
S.D. | 46.68 | 48.39 | 42.35 | 46.36 | 55.86 | 64.14 | |||
Insurance | Mean | 448.98 | 426.86 | 547.37 | 630.88 | 573.17 | 599.64 | ||
S.D. | 605.03 | 576.30 | 640.82 | 717.60 | 697.94 | 772.05 | |||
OPE | FHC | Mean | 22.42 | 21.08 | 21.47 | 22.21 | 20.46 | 22.30 | |
S.D. | 15.09 | 13.67 | 14.31 | 13.34 | 13.76 | 12.99 | |||
Banking | Mean | 11.30 | 11.66 | 11.24 | 11.92 | 13.03 | 13.45 | ||
S.D. | 8.04 | 7.91 | 7.59 | 8.27 | 8.42 | 8.73 | |||
Security | Mean | 3.09 | 2.75 | 2.73 | 2.89 | 3.02 | 3.24 | ||
S.D. | 2.76 | 2.50 | 2.74 | 2.77 | 4.30 | 3.92 | |||
Insurance | Mean | 6.53 | 5.62 | 6.78 | 6.87 | 5.82 | 6.43 | ||
S.D. | 6.66 | 6.30 | 6.97 | 7.15 | 7.32 | 8.18 | |||
Equity | FHC | Mean | 128.76 | 115.98 | 136.64 | 141.36 | 144.72 | 157.68 | |
S.D. | 66.94 | 61.25 | 74.53 | 76.15 | 71.64 | 80.26 | |||
Undesirable output | Banking | Mean | 5.54 | 4.86 | 4.89 | 2.27 | 1.74 | 1.58 | |
NPLs | S.D. | 3.78 | 4.64 | 3.96 | 2.40 | 2.24 | 2.04 | ||
Intermediate output/input | NI | FHC | Mean | 10.69 | 0.93 | 6.52 | 8.75 | 9.57 | 11.69 |
S.D. | 8.85 | 9.47 | 6.69 | 5.76 | 8.79 | 7.91 | |||
Banking | Mean | 5.68 | 2.73 | 3.55 | 6.83 | 7.39 | 9.18 | ||
S.D. | 5.89 | 5.54 | 4.60 | 4.81 | 5.66 | 6.20 | |||
Security | Mean | 1.84 | 0.00 | 1.49 | 1.36 | 0.89 | 0.73 | ||
S.D. | 2.76 | 2.31 | 1.86 | 1.77 | 3.26 | 1.31 | |||
Insurance | Mean | 5.59 | −2.87 | 2.39 | 0.56 | 2.11 | 2.99 | ||
S.D. | 9.54 | 7.61 | 4.51 | 4.53 | 4.25 | 5.26 | |||
Revenue | FHC | Mean | 64.82 | 59.09 | 84.59 | 75.79 | 61.97 | 89.47 | |
S.D. | 67.89 | 63.15 | 119.81 | 92.97 | 81.21 | 120.72 | |||
Marketability outputs | EPS | FHC | Mean | 1.35 | −0.14 | 0.76 | 1.05 | 1.09 | 1.27 |
S.D. | 0.93 | 1.54 | 0.91 | 0.49 | 0.83 | 0.66 | |||
MV | FHC | Mean | 175.72 | 105.90 | 164.45 | 179.53 | 138.02 | 147.69 | |
S.D. | 165.73 | 92.45 | 151.65 | 137.13 | 96.46 | 100.59 | |||
CPI (2015 = 100) | 90.55 | 93.74 | 92.92 | 93.82 | 95.15 | 96.99 |
Assets | Equity | OPE | Net Revenue | Net Income | EPS | MV | |
---|---|---|---|---|---|---|---|
Assets | 1.000 | ||||||
Equity | 0.830 *** | 1.000 | |||||
OPE | 0.818 *** | 0.735 *** | 1.000 | ||||
Net Revenue | 0.858 *** | 0.759 *** | 0.930 *** | 1.000 | |||
Net Income | 0.614 *** | 0.734 *** | 0.665 *** | 0.678 *** | 1.000 | ||
EPS | 0.456 *** | 0.522 *** | 0.518 *** | 0.538 *** | 0.908 *** | 1.000 | |
MV | 0.369 *** | 0.417 *** | 0.426 *** | 0.426 *** | 0.541 *** | 0.265 *** | 1.000 |
Variable | Models | ||||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
Input | |||||
Total assets | V | V | |||
Average total assets | V | V | V | ||
Equity | V | ||||
Operating expenses (OPE) | V | V | V | V | V |
Undesirable output | |||||
Non-performing loans (NPLs) | V | V | |||
Intermediate | |||||
Net Revenue | V | ||||
Net Income (NI) | V | V | V | V | |
Output | |||||
Market value | V | V | |||
Variation in market value (VMV) | V | V | V | ||
Earnings per share (EPS) | V | V | V | V | V |
Type | Stage or Period | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|---|
Mean | Std. | Mean | Std. | Mean | Std. | ||
Overall value creation | 0.778 | 0.178 | 0.610 | 0.190 | 0.696 | 0.116 | |
Stage | Profitability | 0.899 | 0.078 | 0.742 | 0.163 | 0.657 | 0.119 |
Marketability | 0.734 | 0.225 | 0.579 | 0.218 | 0.736 | 0.150 | |
Period | 2007 | 0.819 | 0.243 | 0.614 | 0.286 | 0.662 | 0.172 |
2008 | 0.762 | 0.262 | 0.537 | 0.332 | 0.686 | 0.218 | |
2009 | 0.751 | 0.268 | 0.452 | 0.310 | 0.638 | 0.170 | |
2010 | 0.791 | 0.266 | 0.590 | 0.275 | 0.712 | 0.173 | |
2011 | 0.764 | 0.244 | 0.687 | 0.256 | 0.653 | 0.199 | |
2012 | 0.799 | 0.195 | 0.737 | 0.210 | 0.779 | 0.127 |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2007–2012 | |
---|---|---|---|---|---|---|---|
Model 1–2 | 0.199 | 0.217 | 0.011 *** | 0.050 ** | 0.453 | 0.293 | 0.036 ** |
Model 2–3 | 0.411 | 0.128 | 0.004 *** | 0.052 ** | 0.714 | 0.073 * | 0.035 ** |
Bank | Overall Value Creation | Period | Stage | ||||||
---|---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | Profitability | Marketability | ||
Hua Nan | 0.708 | 0.668 | 0.859 | 0.669 | 0.653 | 0.655 | 0.746 | 0.641 | 0.776 |
Fubon | 0.861 | 0.830 | 0.866 | 0.841 | 0.805 | 0.891 | 0.935 | 0.737 | 0.986 |
Cathay | 0.601 | 0.814 | 0.543 | 0.620 | 0.451 | 0.384 | 0.792 | 0.522 | 0.679 |
China Development | 0.684 | 0.611 | 0.666 | 0.761 | 0.896 | 0.401 | 0.771 | 0.762 | 0.607 |
E.SUN | 0.712 | 0.712 | 0.808 | 0.563 | 0.688 | 0.661 | 0.839 | 0.611 | 0.812 |
Yuanta | 0.809 | 0.803 | 0.794 | 0.668 | 0.859 | 0.917 | 0.815 | 0.774 | 0.845 |
Mega | 0.683 | 0.720 | 0.270 | 0.929 | 0.773 | 0.603 | 0.802 | 0.766 | 0.600 |
Taishin | 0.604 | 0.449 | 0.443 | 0.548 | 0.813 | 0.597 | 0.773 | 0.579 | 0.628 |
Shin Kong | 0.434 | 0.523 | 0.313 | 0.447 | 0.348 | 0.344 | 0.628 | 0.422 | 0.446 |
IBF | 0.878 | 0.881 | 0.719 | 0.874 | 0.992 | 0.803 | 1.000 | 0.784 | 0.972 |
SinoPac | 0.645 | 0.462 | 0.950 | 0.633 | 0.507 | 0.475 | 0.846 | 0.679 | 0.612 |
CTBC | 0.718 | 0.645 | 0.849 | 0.516 | 0.757 | 0.760 | 0.781 | 0.636 | 0.800 |
First | 0.609 | 0.832 | 0.669 | 0.492 | 0.632 | 0.495 | 0.533 | 0.452 | 0.766 |
Jih Sun | 0.628 | 0.313 | 0.578 | 0.302 | 0.804 | 0.876 | 0.897 | 0.667 | 0.589 |
Taiwan | 0.707 | 0.962 | 0.709 | 0.702 | 0.629 | 0.532 | 0.656 | 0.758 | |
Taiwan Cooperative | 0.861 | 0.957 | 0.766 | 0.830 | 0.893 | ||||
Mean | 0.696 | 0.662 | 0.686 | 0.638 | 0.712 | 0.653 | 0.779 | 0.657 | 0.736 |
Bank | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2007–2012 |
---|---|---|---|---|---|---|---|
Hua Nan | 0.116 | 1.000 | 0.136 | 0.189 | 0.466 | 0.363 | 0.378 |
Fubon | 0.099 | 0.744 | 0.377 | 0.442 | 0.685 | 1.000 | 0.558 |
Cathay | 0.117 | 0.503 | 0.717 | 1.000 | 0.756 | 0.638 | 0.622 |
China Development | 1.000 | 0.733 | 1.000 | 1.000 | 1.000 | 1.000 | 0.955 |
E.SUN | 0.538 | 0.748 | 0.423 | 0.773 | 0.815 | 0.670 | 0.661 |
Yuanta | 0.998 | 0.357 | 0.999 | 0.657 | 1.000 | 0.279 | 0.715 |
Mega | 1.000 | 0.426 | 1.000 | 1.000 | 1.000 | 1.000 | 0.904 |
Taishin | 0.264 | 0.153 | 0.132 | 1.000 | 0.845 | 0.732 | 0.521 |
Shin Kong | 0.266 | 1.000 | 0.207 | 0.616 | 0.538 | 0.340 | 0.494 |
IBF | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
SinoPac | 0.184 | 0.778 | 0.097 | 0.677 | 0.294 | 0.687 | 0.453 |
CTBC | 0.489 | 1.000 | 0.376 | 0.863 | 1.000 | 1.000 | 0.788 |
First | 0.488 | 0.808 | 0.053 | 0.221 | 0.457 | 0.416 | 0.407 |
Jih Sun | 0.428 | 0.323 | 0.338 | 0.770 | 0.656 | 0.618 | 0.522 |
Taiwan | 0.780 | 0.382 | 0.426 | 0.141 | 0.219 | 0.390 | |
Taiwan Cooperative | 0.838 | 0.236 | 0.537 | ||||
Mean | 0.499 | 0.690 | 0.482 | 0.709 | 0.718 | 0.637 | 0.619 |
Bank | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2007–2012 |
---|---|---|---|---|---|---|---|
Hua Nan | 0.6805 | 0.1533 | 0.8416 | 0.6801 | 0.1044 | 0.8441 | 0.5507 |
Fubon | 0.8356 | 0.5380 | 0.8987 | 0.6798 | 0.7227 | 0.8426 | 0.7529 |
Cathay | 0.7350 | 0.6488 | 0.9957 | 0.9837 | 0.0801 | 0.8937 | 0.7228 |
China Development | 0.2048 | 0.0040 | 0.9687 | 0.9243 | 0.0402 | 1.0000 | 0.5237 |
E.SUN | 0.9607 | 0.6435 | 0.8821 | 0.9263 | 0.2943 | 0.6916 | 0.7331 |
Yuanta | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Mega | 0.3890 | 0.0865 | 0.5718 | 0.7474 | 0.2101 | 0.2456 | 0.3751 |
Taishin | 0.7597 | 0.1021 | 0.7831 | 1.0000 | 0.3385 | 1.0000 | 0.6639 |
Shin Kong | 0.8161 | 0.8333 | 0.6903 | 0.5746 | 0.1806 | 0.8209 | 0.6526 |
IBF | 0.5222 | 0.2162 | 0.4958 | 0.9674 | 0.2122 | 1.0000 | 0.5690 |
SinoPac | 1.0000 | 1.0000 | 1.0000 | 0.7990 | 0.8022 | 0.9501 | 0.9252 |
CTBC | 0.9620 | 0.3974 | 0.8356 | 0.4545 | 0.1659 | 0.9274 | 0.6238 |
First | 0.8333 | 0.1704 | 1.0000 | 0.7468 | 0.0493 | 0.2243 | 0.5040 |
Jih Sun | 0.6383 | 0.3589 | 0.7043 | 1.0000 | 0.8987 | 0.9949 | 0.7659 |
Taiwan | - | 1.0000 | 1.0000 | 1.0000 | 0.4725 | 1.0000 | 0.8945 |
Taiwan Cooperative | - | - | - | - | 1.0000 | 1.0000 | 1.0000 |
Mean | 0.7384 | 0.4768 | 0.8445 | 0.8323 | 0.4107 | 0.8397 | 0.6838 |
Bank | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2007–2012 |
---|---|---|---|---|---|---|---|
Hua Nan | 1.0000 | 1.0000 | 0.9997 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
Fubon | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Cathay | 1.0000 | 0.0322 | 0.1979 | 0.0293 | 0.0231 | 0.1905 | 0.2455 |
China Development | - | - | - | - | - | - | - |
E.SUN | - | - | - | - | - | - | - |
Yuanta | - | - | - | - | - | - | - |
Mega | 0.9969 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9995 | 0.9994 |
Taishin | - | - | - | - | - | - | - |
Shin Kong | 0.1372 | 0.0334 | 0.0074 | 0.0403 | 0.1416 | 0.4690 | 0.1381 |
IBF | - | - | - | - | - | - | - |
SinoPac | - | - | - | - | - | - | - |
CTBC | - | - | - | - | 1.0000 | 0.2358 | 0.6179 |
First | 1.0000 | 0.4018 | 0.1408 | 0.3327 | 0.3216 | 0.3416 | 0.4231 |
Jih Sun | - | - | - | - | - | - | - |
Taiwan | - | 1.0000 | 1.0000 | 1.0000 | 0.2280 | 0.4554 | 0.7367 |
Taiwan Cooperative | - | - | - | - | 0.9999 | 0.9999 | 0.9999 |
Mean | 0.8557 | 0.6382 | 0.6208 | 0.6289 | 0.5893 | 0.6324 | 0.6845 |
Multi-Stage Performance Evaluation without NPLs (Model 3) | Multi-Stage Performance Evaluation with NPLs (Model 4) | Black-Box (Single-Stage) Performance Evaluation with NPLs (Model 5) | ||||
---|---|---|---|---|---|---|
Value Creation | Banking Profitability | Value Creation | Banking Profitability | Value Creation | ||
1 | Hua Nan | 0.708 | 0.373 | 0.709 | 0.378 | 0.471 |
2 | Fubon | 0.861 | 0.457 | 0.878 | 0.558 | 0.936 |
3 | Cathay | 0.601 | 0.599 | 0.605 | 0.622 | 0.592 |
4 | China Development | 0.684 | 1.000 | 0.673 | 0.955 | 0.620 |
5 | E.SUN | 0.712 | 0.489 | 0.755 | 0.661 | 0.809 |
6 | Yuanta | 0.809 | 0.548 | 0.851 | 0.715 | 0.763 |
7 | Mega | 0.683 | 0.922 | 0.680 | 0.904 | 0.370 |
8 | Taishin | 0.604 | 0.494 | 0.610 | 0.521 | 0.390 |
9 | Shin Kong | 0.434 | 0.474 | 0.437 | 0.494 | 0.237 |
10 | Waterland | 0.878 | 1.000 | 0.878 | 1.000 | 1.000 |
11 | SinoPac | 0.645 | 0.432 | 0.651 | 0.453 | 0.415 |
12 | CTBC | 0.718 | 0.682 | 0.745 | 0.788 | 0.913 |
13 | First | 0.609 | 0.429 | 0.605 | 0.407 | 0.487 |
14 | Jih Sun | 0.628 | 0.569 | 0.617 | 0.522 | 0.724 |
15 | Taiwan | 0.707 | 0.336 | 0.716 | 0.390 | 0.497 |
16 | Taiwan Cooperative | 0.861 | 0.491 | 0.869 | 0.537 | 0.795 |
Average | 0.696 | 0.581 | 0.705 | 0.619 | 0.626 |
FHC | Top 2 | Top 3 | Top 4 | Top 5 |
---|---|---|---|---|
Fubon | 2 (33.33%) | 3 (50.00%) | 5 (83.33%) | 5 (83.33%) |
Yuanta | 3 (50.00%) | 3 (50.00%) | 4 (66.67%) | 5 (83.33%) |
Waterland | 3 (50.00%) | 4 (66.67%) | 4 (66.67%) | 5 (83.33%) |
Taiwan Cooperative | 2 (33.33%) | 2 (33.33%) | 2 (33.33%) | 2 (33.33%) |
SinoPac | 1 (16.67%) | 1 (16.67%) | 2 (33.33%) | 2 (33.33%) |
Jih Sun | 1 (16.67%) | 1 (33.33%) | 3 (50.00%) | |
Taiwan | 1 (20.00%) | 1 (20.00%) | 1 (20.00%) | 1 (20.00%) |
Mega | 1 (16.67%) | 1 (16.67%) | 1 (16.67%) | 1 (16.67%) |
Hua Nan | 1 (16.67%) | 1 (16.67%) | 1 (16.67%) | |
China Development | 1 (16.67%) | 1 (16.67%) | 1 (33.33%) | |
CTBC | 1 (16.67%) | 1 (16.67%) | ||
First | 1 (16.67%) | 1 (16.67%) | 1 (16.67%) | |
Cathay | ||||
E.SUN | 1 (16.67%) | |||
Taishin | ||||
Shin Kong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-Y.; Chiu, S.-H.; Wang, Y.; Ouyang, Z. Value Creation Performance Evaluation for Taiwanese Financial Holding Companies during the Global Financial Crisis Based on a Multi-Stage NDEA Model under Uncertainty. Axioms 2022, 11, 35. https://doi.org/10.3390/axioms11020035
Lin T-Y, Chiu S-H, Wang Y, Ouyang Z. Value Creation Performance Evaluation for Taiwanese Financial Holding Companies during the Global Financial Crisis Based on a Multi-Stage NDEA Model under Uncertainty. Axioms. 2022; 11(2):35. https://doi.org/10.3390/axioms11020035
Chicago/Turabian StyleLin, Tzu-Yu, Sheng-Hsiung Chiu, Yunxi Wang, and Zihan Ouyang. 2022. "Value Creation Performance Evaluation for Taiwanese Financial Holding Companies during the Global Financial Crisis Based on a Multi-Stage NDEA Model under Uncertainty" Axioms 11, no. 2: 35. https://doi.org/10.3390/axioms11020035
APA StyleLin, T. -Y., Chiu, S. -H., Wang, Y., & Ouyang, Z. (2022). Value Creation Performance Evaluation for Taiwanese Financial Holding Companies during the Global Financial Crisis Based on a Multi-Stage NDEA Model under Uncertainty. Axioms, 11(2), 35. https://doi.org/10.3390/axioms11020035