Approximate Flow Friction Factor: Estimation of the Accuracy Using Sobol’s Quasi-Random Sampling
Abstract
:1. Introduction
2. Estimation of Error; Testing Patterns and Quantity of Points
2.1. Relative Error
2.2. Chosen Approximation for Tests
2.3. Distribution of Testing Points
2.3.1. Sobol’s Quasi-Random Testing Points
2.3.2. Random Sampling
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colebrook, C.F. Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civ. Eng. 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Colebrook, C.; White, C. Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1937, 161, 367–381. [Google Scholar] [CrossRef]
- Brown, G.O. The history of the Darcy-Weisbach equation for pipe flow resistance. In Proceedings of the Environmental and Water Resources History Sessions at ASCE Civil Engineering Conference and Exposition, Washington, DC, USA, 3–7 November 2002; pp. 34–43. [Google Scholar] [CrossRef] [Green Version]
- Moody, L.F. Friction factors for pipe flow. Trans. ASME 1944, 66, 671–684. [Google Scholar]
- Jackson, D.; Launder, B. Osborne Reynolds and the publication of his papers on turbulent flow. Annu. Rev. Fluid Mech. 2007, 39, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Annus, I.; Vassiljev, A.; Kändler, N. Determination of pressure drop and flow velocity in old rough pipes. Proceedings 2018, 2, 590. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, J.; Zambrano, W.; Gómez, N.; Saldarriaga, J. Turbulent flow in PVC pipes in water distribution systems. Urban Water J. 2020, 17, 503–511. [Google Scholar] [CrossRef]
- Brkić, D. Solution of the implicit Colebrook equation for flow friction using Excel. Spreadsheets Educ. 2017, 10, 4663. Available online: https://sie.scholasticahq.com/article/4663 (accessed on 12 August 2021).
- Praks, P.; Brkić, D. Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction. Adv. Civ. Eng. 2018, 2018, 5451034. [Google Scholar] [CrossRef] [Green Version]
- Praks, P.; Brkić, D. Choosing the optimal multi-point iterative method for the Colebrook flow friction equation. Processes 2018, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Olivares, A.; Guerra, R.; Alfaro, M.; Notte-Cuello, E.; Puentes, L. Experimental evaluation of correlations used to calculate friction factor for turbulent flow in cylindrical pipes. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2019, 35, 15. [Google Scholar] [CrossRef]
- Gregory, G.A.; Fogarasi, M. Alternate to standard friction factor equation. Oil Gas J. 1985, 83, 120–127. [Google Scholar]
- Yıldırım, G. Computer-based analysis of explicit approximations to the implicit Colebrook–White equation in turbulent flow friction factor calculation. Adv. Eng. Softw. 2009, 40, 1183–1190. [Google Scholar] [CrossRef]
- Brkić, D. Review of explicit approximations to the Colebrook relation for flow friction. J. Pet. Sci. Eng. 2011, 77, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Brkić, D.; Stajić, Z. Excel VBA-Based User Defined Functions for highly precise Colebrook’s pipe flow friction approximations: A comparative overview. Facta Univ. Ser. Mech. Eng. 2021, 19, 253–269. [Google Scholar] [CrossRef]
- Qiu, M.; Ostfeld, A. A head formulation for the steady-state analysis of water distribution systems using an explicit and exact expression of the Colebrook–White equation. Water 2021, 13, 1163. [Google Scholar] [CrossRef]
- Winning, H.K.; Coole, T. Explicit friction factor accuracy and computational efficiency for turbulent flow in pipes. Flow Turbul. Combust. 2013, 90, 1–27. [Google Scholar] [CrossRef]
- Winning, H.K.; Coole, T. Improved method of determining friction factor in pipes. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 941–949. [Google Scholar] [CrossRef]
- Samadifar, M.; Toghraie, D. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl. Therm. Eng. 2018, 133, 671–681. [Google Scholar] [CrossRef]
- Rahmati, A.R.; Akbari, O.A.; Marzban, A.; Toghraie, D.; Karimi, R.; Pourfattah, F. Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm. Sci. Eng. Prog. 2018, 5, 263–277. [Google Scholar] [CrossRef]
- Shahsavar, A.; Godini, A.; Sardari, P.T.; Toghraie, D.; Salehipour, H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J. Therm. Anal. Calorim. 2019, 137, 1031–1043. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Eslami, F.; Mehmandoust, B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches. Comput. Math. Appl. 2019, 77, 662–692. [Google Scholar] [CrossRef]
- Zahreddine, H. Accurate explicit analytical solution for Colebrook-White equation. Mech. Res. Commun. 2021, 111, 103646. [Google Scholar] [CrossRef]
- Muzzo, L.E.; Matoba, G.K.; Ribeiro, L.F. Uncertainty of pipe flow friction factor equations. Mech. Res. Commun. 2021, 116, 103764. [Google Scholar] [CrossRef]
- Shaikh, M.M.; Massan, S.R.; Wagan, A.I. A sixteen decimal places’ accurate Darcy friction factor database using non-linear Colebrook’s equation with a million nodes: A way forward to the soft computing techniques. Data Brief 2019, 27, 104733. [Google Scholar] [CrossRef] [PubMed]
- Sobol, I.M. Uniformly distributed sequences with an additional uniform property. USSR Comput. Math. Math. Phys. 1976, 16, 236–242. [Google Scholar] [CrossRef]
- Clamond, D. Efficient resolution of the Colebrook equation. Ind. Eng. Chem. Res. 2009, 48, 3665–3671. [Google Scholar] [CrossRef] [Green Version]
- Giustolisi, O.; Berardi, L.; Walski, T.M. Some explicit formulations of Colebrook–White friction factor considering accuracy vs. computational speed. J. Hydroinform. 2011, 13, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Biberg, D. Fast and accurate approximations for the Colebrook equation. J. Fluids Eng. 2017, 139, 031401. [Google Scholar] [CrossRef]
- Brkić, D.; Praks, P. Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-function. Mathematics 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Praks, P.; Brkić, D. Review of new flow friction equations: Constructing Colebrook explicit correlations accurately. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2020, 36, 41. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. One-log call iterative solution of the Colebrook equation for flow friction based on Padé polynomials. Energies 2018, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Vatankhah, A.R. Approximate analytical solutions for the Colebrook equation. J. Hydraul. Eng. 2018, 144, 06018007. [Google Scholar] [CrossRef]
- Lamri, A.A. Discussion of “Approximate analytical solutions for the Colebrook equation”. J. Hydraul. Eng. 2020, 146, 07019012. [Google Scholar] [CrossRef] [Green Version]
- Lamri, A.A.; Easa, S.M. Computationally efficient and accurate solution for Colebrook equation based on Lagrange theorem. J. Fluids Eng. 2021, 144, 014504. [Google Scholar] [CrossRef]
- Brkić, D.; Ćojbašić, Ž. Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations. Fluids 2017, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Sobol, I.M.; Turchaninov, V.I.; Levitan, Y.L.; Shukhman, B.V. Quasi-Random Sequence Generators; Distributed by OECD/NEA Data Bank; Keldysh Institute of Applied Mathematics; Russian Academy of Sciences: Moscow, Russia, 1992; Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/LPTAU51.rar (accessed on 12 January 2021).
- Bratley, P.; Fox, B.L. Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. TOMS 1988, 14, 88–100. [Google Scholar] [CrossRef]
- Joe, S.; Kuo, F.Y. Constructing Sobol sequences with better two-dimensional projections. SIAM J. Sci. Comput. 2008, 30, 2635–2654. [Google Scholar] [CrossRef] [Green Version]
- Joe, S.; Kuo, F.Y. Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. TOMS 2003, 29, 49–57. [Google Scholar] [CrossRef]
- Fox, B.L. Algorithm 647: Implementation and relative efficiency of quasirandom sequence generators. ACM Trans. Math. Softw. TOMS 1986, 12, 362–376. [Google Scholar] [CrossRef]
- Hamlet, R. Random testing. Encycl. Softw. Eng. 1994, 2, 971–978. [Google Scholar] [CrossRef]
- Hamlet, D. When only random testing will do. In Proceedings of the 1st International Workshop on Random Testing, Portland, ME, USA, 20 July 2006; pp. 1–9. [Google Scholar] [CrossRef]
- Chen, T.Y.; Merkel, R. Quasi-random testing. IEEE Trans. Reliab. 2007, 56, 562–568. [Google Scholar] [CrossRef]
- Engine for Generating (Scrambled) Sobol’ Sequences. Available online: https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.stats.qmc.Sobol.html (accessed on 12 January 2022).
- Ashraf, A.; Pervaiz, S.; Haider Bangyal, W.; Nisar, K.; Ibrahim, A.; Rodrigues, J.J.P.C.; Rawat, D.B. Studying the Impact of Initialization for Population-Based Algorithms with Low-Discrepancy Sequences. Appl. Sci. 2021, 11, 8190. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Nisar, K.; Ibrahim, A.; Haque, M.R.; Rodrigues, J.J.P.C.; Rawat, D.B. Comparative Analysis of Low Discrepancy Sequence-Based Initialization Approaches Using Population-Based Algorithms for Solving the Global Optimization Problems. Appl. Sci. 2021, 11, 7591. [Google Scholar] [CrossRef]
- Wang, L.; Defo, M.; Xiao, Z.; Ge, H.; Lacasse, M.A. Stochastic Simulation of Mould Growth Performance of Wood-Frame Building Envelopes under Climate Change: Risk Assessment and Error Estimation. Buildings 2021, 11, 333. [Google Scholar] [CrossRef]
S1i | S2i | Re | Ε | f0−0.5 | f0 | A1 | A2 | A3 | f−0.5 | f | δ% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 0.5 | 632455.5 | 0.0001257433 | 8.347569 | 0.014351 | 12.57773 | 22.40839 | 3.10943 | 8.347588 | 0.014351 | 0.00046325 |
2 | 0.25 | 0.75 | 50297.3 | 0.0000063058 | 6.919347 | 0.020887 | 10.04608 | 10.08528 | 2.31107 | 6.919307 | 0.020887 | 0.00116755 |
3 | 0.75 | 0.25 | 7952707.3 | 0.0025074224 | 6.337726 | 0.024896 | 15.10939 | 2480.07058 | 7.81604 | 6.337728 | 0.024896 | 0.00007747 |
4 | 0.125 | 0.625 | 14184.1 | 0.0000281588 | 5.949113 | 0.028255 | 8.780253 | 8.82962 | 2.17811 | 5.949092 | 0.028255 | 0.00071176 |
5 | 0.625 | 0.125 | 2242706.8 | 0.0111969246 | 5.038929 | 0.039384 | 13.84356 | 3117.96594 | 8.04493 | 5.038919 | 0.039384 | 0.00038896 |
6 | 0.375 | 0.375 | 178355.9 | 0.0005615084 | 7.195110 | 0.019316 | 11.31191 | 23.69164 | 3.16512 | 7.195132 | 0.019316 | 0.00059865 |
7 | 0.875 | 0.875 | 28200544.8 | 0.0000014121 | 11.694507 | 0.007312 | 16.37522 | 21.29784 | 3.05860 | 11.694525 | 0.007312 | 0.00031746 |
8 | 0.0625 | 0.9375 | 7532.4 | 0.0000006682 | 5.477297 | 0.033332 | 8.147338 | 8.14796 | 2.09776 | 5.477294 | 0.033333 | 0.00011350 |
9 | 0.5625 | 0.4375 | 1190971.2 | 0.0002657178 | 8.104136 | 0.015226 | 13.21065 | 52.32980 | 3.95756 | 8.104180 | 0.015226 | 0.00108532 |
⁞ | ⁞ | |||||||||||
2049 | 0.0002441 | 0.941162 | 4009.9 | 0.0000006396 | 5.007611 | 0.039878 | 7.516895 | 7.51721 | 2.01719 | 5.007631 | 0.039878 | 0.00081838 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Praks, P.; Brkić, D. Approximate Flow Friction Factor: Estimation of the Accuracy Using Sobol’s Quasi-Random Sampling. Axioms 2022, 11, 36. https://doi.org/10.3390/axioms11020036
Praks P, Brkić D. Approximate Flow Friction Factor: Estimation of the Accuracy Using Sobol’s Quasi-Random Sampling. Axioms. 2022; 11(2):36. https://doi.org/10.3390/axioms11020036
Chicago/Turabian StylePraks, Pavel, and Dejan Brkić. 2022. "Approximate Flow Friction Factor: Estimation of the Accuracy Using Sobol’s Quasi-Random Sampling" Axioms 11, no. 2: 36. https://doi.org/10.3390/axioms11020036
APA StylePraks, P., & Brkić, D. (2022). Approximate Flow Friction Factor: Estimation of the Accuracy Using Sobol’s Quasi-Random Sampling. Axioms, 11(2), 36. https://doi.org/10.3390/axioms11020036