Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem
Abstract
:1. Introduction and Background
- (i)
- (ii)
- for each
- (iii)
2. -Statistical Convergence
3. -Statistically Cauchy Sequences
4. -Strong Cesàro Summability
5. Application of -Statistical Convergence
6. Concluding Remarks and Suggestions for Further Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Akgun, F.A.; Rhoades, B.E. Properties of some q-Hausdorff matrices. Appl. Math. Comput. 2013, 219, 7392–7397. [Google Scholar] [CrossRef]
- Al-Abied, A.A.H.A.; Ayman Mursaleen, M.; Mursaleen, M. Szász type operators involving Charlier polynomials and approximation properties. Filomat 2021, 35, 5149–5159. [Google Scholar] [CrossRef]
- Aktuğlu, H.; Bekar, Ş. q-Cesàro matrix and q-statistical convergence. J. Comput. Appl. Math. 2011, 235, 4717–4723. [Google Scholar] [CrossRef] [Green Version]
- Bustoz, J.; Gordillo, L.F. q-Hausdorff summability. J. Comput. Anal. Appl. 2005, 7, 35–48. [Google Scholar]
- Cai, Q.B.; Kilicman, A.; Ayman Mursaleen, M. Approximation properties and q-statistical convergence of Stancu type generalized Baskakov-Szász operators. J. Funct. Spaces 2022, 2022, 2286500. [Google Scholar] [CrossRef]
- Alotaibi, A.; Nasiruzzaman, M.; Mursaleen, M. Approximation by Phillips operators via q-Dunkl generalization based on a new parameter. J. King Saud Univ.-Sci. 2021, 33, 101413. [Google Scholar] [CrossRef]
- Ansari, K.J.; Ahmad, I.; Mursaleen, M.; Hussain, I. On some statistical approximation by (p,q)-Bleimann, Butzer and Hahn operator. Symmetry 2018, 10, 731. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Mansoori, M.S.; Iliyas, M.; Mursaleen, M. Lupaş post quantum blending functions and Bézier curves over arbitrary intervals. Filomat 2022, 36, 331–347. [Google Scholar]
- Khan, A.; Mansoori, M.S.; Khan, K.; Mursaleen, M. Lupaş type Bernstein operators on triangles based on quantum analogue. Alex. Eng. J. 2021, 60, 5909–5919. [Google Scholar] [CrossRef]
- Nisar, K.S.; Sharma, V.; Khan, A. Lupaş blending functions with shifted knots and q-Bézier curves. J. Inequal. Appl. 2020, 2020, 184. [Google Scholar] [CrossRef]
- Qasim, M.; Mursaleen, M.; Khan, A.; Abbas, Z. Approximation by generalized Lupaş operators based on q-integer. Mathematics 2020, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Gupta, A.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Acar, T.; Mursaleen, M.; Deveci, S.N. Gamma operators reproducing exponential functions. Adv. Differ. Equ. 2020, 2020, 423. [Google Scholar] [CrossRef]
- Braha, N.; Mansour, T.; Mursaleen, M.; Acar, T. Convergence of λ-Bernstein operators via power series summability method. J. Appl. Math. Comput. 2021, 65, 125–146. [Google Scholar] [CrossRef]
- Loku, V.; Braha, N.L.; Mansour, T.; Mursaleen, M. Approximation by a power series summability method of Kantorovich type Szász operators including Sheffer polynomials. Adv. Differ. Equ. 2021, 2021, 165. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Kajla, A.; Mursaleen, M.; Alghamdi, M.A. Blending type approximation by τ-Baskakov-Durrmeyer type hybrid operators. Adv. Differ. Equ. 2020, 2020, 467. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Mukheimer, A.; Mursaleen, M. A Dunkl type generalization of Szász-Kantorovich operators via post quantum calculus. Symmetry 2019, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Nasiruzzaman, M.; Rao, N.; Kumar, M.; Kumar, R. Approximation on bivariate parametric-extension of Baskakov-Durrmeyer-operators. Filomat 2021, 35, 2783–2800. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Rao, N.; Srivastava, A.; Kumar, R. Approximation on a class of Szász–Mirakyan operators via second kind of beta operators. J. Inequal. Appl. 2020, 45, 45. [Google Scholar] [CrossRef]
- Wani, S.A.; Mursaleen, M.; Nisar, K.S. Certain approximation properties of Brenke polynomials using Jakimovski–-Leviatan operators. J. Inequal. Appl. 2021, 2021, 104. [Google Scholar] [CrossRef]
- Koornwinder, T.H. q-Special Functions, a Tutorial, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics; Gerstenhaber, M., Stasheff, J., Eds.; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 1992; Volume 134. [Google Scholar]
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Kilicman, A.; Mursaleen, M.A.; Al-Abied, A.A.H.A. Stancu type Baskakov–Durrmeyer operators and approximation properties. Mathematics 2020, 8, 1164. [Google Scholar] [CrossRef]
- Garoni, C.; Mazza, M.; Serra-Capizzano, S. Block generalized locally Toeplitz sequences: From the theory to the applications. Axioms 2018, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Garoni, C.; Serra-Capizzano, S. Generalized locally Toeplitz Sequences: Theory and Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Axelsson, O.; Lindskog, G. On the rate of convergence of the preconditioned conjugate gradient method. Numer. Math. 1986, 48, 499–523. [Google Scholar] [CrossRef]
- Maddox, I.J. Elements of Functional Analysis; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Freedman, A.R.; Sember, J.J. Densities and summability. Pacific J. Math. 1981, 95, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Gadjiev, A.D.; Orhan, C. Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 2002, 32, 129–138. [Google Scholar] [CrossRef]
- Mursaleen, M.; Edely, O.H.H. Statistical convergence of double sequences. J. Math. Anal. Appl. 2003, 288, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Çinar, M.; Et, M. q-Double Cesàro matrices and q-statistical convergence of double sequences. Natl. Acad. Sci. Lett. 2020, 43, 73–76. [Google Scholar] [CrossRef]
- Fridy, J.A. Statistical limit points. Proc. Am. Math. Soc. 1993, 118, 1187–1192. [Google Scholar] [CrossRef]
- Šalát, T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30, 139–150. [Google Scholar]
- Fridy, J.A. On statistical convergence. Analysis 1985, 5, 301–313. [Google Scholar] [CrossRef]
- Edely, O.H.H.; Mursaleen, M. On statistical A-summability. Math. Comput. Model. 2009, 49, 672–680. [Google Scholar] [CrossRef]
- Korovkin, P.P. Linear Operators and Approximation Theory; Hindustan Publ. Co.: Delhi, India, 1960. [Google Scholar]
- Alotaibi, A.; Mursaleen, M. Korovkin type approximation theorems via lacunary equistatistical convergence. Filomat 2016, 30, 3641–3647. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A.; Khan, M.A. Korovkin type statistical approximation theorem for a function of two variables. J. Comput. Anal. Appl. 2016, 21, 1176–1184. [Google Scholar]
- Mohiuddine, S.A.; Alotaibi, A.; Mursaleen, M. Statistical summability (C,1) and a Korovkin type approximation theorem. J. Ineq. Appl. 2012, 2012, 172. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddine, S.A.; Hazarika, B.; Alghamdi, M.A. Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems. Filomat 2019, 33, 4549–4560. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Alotaibi, A. Korovkin type approximation theorem for functions of two variables through statistical A-summability. Adv. Differ. Equ. 2012, 2012, 65. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Karakaya, V.; Ertürk, M.; Gxuxrsoy, F. Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl. Math. Comput. 2012, 218, 9132–9137. [Google Scholar] [CrossRef]
- Saini, K.; Raj, K.; Mursaleen, M. Deferred Cesàro and deferred Euler equi-statistical convergence and its applications to Korovkin-type approximation theorem. Int. J. Gen. Syst. 2021, 50, 567–579. [Google Scholar] [CrossRef]
- Schoenberg, I.J. The integrability of certain functions and related summability methods. Am. Math. Mon. 1959, 66, 361–775. [Google Scholar] [CrossRef]
- Serra-Capizzano, S. A Korovkin-type theory for finite Toeplitz operators via matrix algebras. Numer. Math. 1999, 82, 117–142. [Google Scholar] [CrossRef]
- Serra-Capizzano, S. A Korovkin-based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces. SIAM J. Numer. Anal. 1999, 36, 1831–1857. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayman Mursaleen, M.; Serra-Capizzano, S. Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem. Axioms 2022, 11, 70. https://doi.org/10.3390/axioms11020070
Ayman Mursaleen M, Serra-Capizzano S. Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem. Axioms. 2022; 11(2):70. https://doi.org/10.3390/axioms11020070
Chicago/Turabian StyleAyman Mursaleen, Mohammad, and Stefano Serra-Capizzano. 2022. "Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem" Axioms 11, no. 2: 70. https://doi.org/10.3390/axioms11020070
APA StyleAyman Mursaleen, M., & Serra-Capizzano, S. (2022). Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem. Axioms, 11(2), 70. https://doi.org/10.3390/axioms11020070