Positive Numerical Approximation of Integro-Differential Epidemic Model
Abstract
:1. Introduction
2. The Continuous Model
- is such that ;
- ;
- is the unique solution of the final size relation.
3. The Numerical Model
3.1. Basic Properties
- The sequence is positive;
- The sequence is bounded from above by .
3.2. Convergence
- the starting errors for satisfy
- the weights and satisfy (8).
3.3. The Numerical Final Size
4. Trapezoidal Discretization in Some Realistic Cases
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brauer, F. Age of infection epidemic models. In Mathematical and Statistical Modeling for Emerging and Re-Emerging Infectious Diseases; Springer International Publishing: Cham, Switzerland, 2016; pp. 207–220. [Google Scholar]
- Brauer, F. A new epidemic model with indirect transmission. J. Biol. Dyn. 2017, 11, 285–293. [Google Scholar] [CrossRef]
- Brauer, F.; Xiao, Y.; Moghadas, S.M. Drug resistance in an age-of-infection model. Math. Popul. Stud. 2017, 24, 64–78. [Google Scholar] [CrossRef]
- Breda, D.; Diekmann, O.; de Graaf, W.F.; Pugliese, A.; Vermiglio, R. On the formulation of epidemic models (an appraisal of Kermack and McKendrick). J. Biol. Dyn. 2012, 6, 103–117. [Google Scholar] [CrossRef]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. The legacy of Kermack and McKendrick. In Epidemic Models: Their Structure and Relation to Data; Mollison, D., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 95–115. [Google Scholar]
- Feng, Z.; Thieme, H.R. Endemic Models with Arbitrarily Distributed Periods of Infection I: Fundamental Properties of the Model. SIAM J. Appl. Math. 2000, 61, 803–833. [Google Scholar] [CrossRef]
- Aldis, G.K.; Roberts, M.G. An integral equation model for the control of a smallpox outbreak. Math. Biosci. Eng. 2005, 195, 1–22. [Google Scholar] [CrossRef]
- Brauer, F.; Shuai, Z.; van den Driessche, P. Dynamics of an age-of-infection cholera model. Math. Biosci. Eng. 2013, 10, 1335–1349. [Google Scholar] [PubMed]
- Brauer, F. The Kermack-McKendrick epidemic model revisited. Math. Biosci. 2005, 198, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Fodor, Z.; Katz, S.D.; Kovacs, T.G. Why integral equations should be used instead of differential equations to describe the dynamics of epidemics. arXiv 2020, arXiv:2004.07208. [Google Scholar]
- Keimer, A.; Pflug, L. Modeling infectious diseases using integro-differential equations: Optimal control strategies for policy decisions and Applications in COVID-19. ResearchGate 2020. [Google Scholar]
- Kergaßner, A.; Burkhardt, C.; Lippold, D.; Kergaßner, M.; Pflug, L.; Budday, D.; Steinmann, P.; Budday, S. Memory-based meso-scale modeling of COVID-19. Comput. Mech. 2020, 66, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Thieme, H.R.; Castillo-Chavez, C. How May Infection-Age-Dependent Infectivity Affect the Dynamics of HIV/AIDS? SIAM J. Appl. Math. 1993, 53, 1447–1479. [Google Scholar] [CrossRef] [Green Version]
- Thieme, H.R.; Castillo-Chavez, C. On the role of variable infectivity in the dynamics of the human immunodeficiency virus. In Mathematical and Statistical Approaches to AIDS Epidemiology; Castillo-Chavez, C., Ed.; Springer: Berlin, Germany, 1989; Volume 83. [Google Scholar]
- Brauer, F.; Castillo-Chavez, C.; Feng, Z. Mathematical Models in Epidemiology. In Texts in Applied Math; Springer: New York, NY, USA, 2019. [Google Scholar]
- Brunner, H. Collocation Methods for Volterra Integral and Related Functional Differential Equations. In Cambridge Monographs on Applied and Computational Mathematics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Brunner, H. Volterra Integral Equations: An Introduction to Theory and Applications; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Brunner, H.; van der Houwen, P.J. The numerical solution of Volterra equations. In CWI Monographs, 3; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Ahmad, H.; Seadawy, A.R.; Ganie, A.H.; Rashid, S.; Khan, T.A.; Abu-Zinadah, H. Approximate Numerical solutions for the nonlinear dispersive shallow water waves as the Fornberg–Whitham model equations. Results Phys. 2021, 22, 103907. [Google Scholar] [CrossRef]
- Nawaz, R.; Farid, S.; Ayaz, M.; Ahmad, H. Application of New Iterative Method to Fractional Order Integro-Differential Equations. Int. J. Appl. Comput. Math. 2021, 7, 220. [Google Scholar] [CrossRef]
- Ashraf, F.; Ahmad, M.O. Nonstandard finite difference scheme for control of measles epidemiology. Int. J. Adv. Appl. 2019, 6, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Dang, Q.A.; Hoang, M.T.; Dang, Q.L. Nonstandard finite difference schemes for solving a modified epidemiological model for computer viruses. J. Comput. Sci. Technol. 2018, 34, 171–185. [Google Scholar]
- Dang, Q.A.; Hoang, M.T.; Trejos, D.Y.; Valverde, J.C. Nonstandard Finite Difference Schemes for the Study of the Dynamics of the Babesiosis Disease. Symmetry 2020, 12, 1447. [Google Scholar] [CrossRef]
- Lubuma, J.M.S.; Terefe, Y.A. A nonstandard Volterra difference equation for the SIS epidemiological model. RACSAM 2015, 109, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Treibert, S.; Brunner, H.; Ehrhardt, M. A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics. Math. Biosci. Eng. 2022, 19, 1213–1238. [Google Scholar]
- Messina, E.; Pezzella, M.; Vecchio, A. A non-standard numerical scheme for an age-of-infection epidemic model. J. Comput. Dyn. 2021. [Google Scholar] [CrossRef]
- Diekmann, O.; Heesterbeek, J.A.P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation; Wiley Series in Mathematical and Computational Biology; John Wiley & Sons Inc.: Chichester, UK, 2000. [Google Scholar]
- Brauer, F. Age-of-infection and the final size relation. Math. Biosci. Eng. 2008, 5, 681–690. [Google Scholar]
- Diekmann, O.; Othmer, H.G.; Planqué, R.; Bootsma, M.C.J. The discrete-time Kermack–McKendrick model: A versatile and computationally attractive framework for modeling epidemics. Proc. Natl. Acad. Sci. USA 2021, 118, e2106332118. [Google Scholar] [CrossRef] [PubMed]
- Linz, P. Analytical and Numerical Methods for Volterra Equations. In Studies in Applied and Numerical Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1985. [Google Scholar]
- Messina, E.; Vecchio, A. A sufficient condition for the stability of direct quadrature methods for Volterra integral equations. Numer. Algorithms 2017, 74, 1223–1236. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Academic Press: London, UK, 1984. [Google Scholar]
- Roberts, M.G.; Heesterbeek, J.A. Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. J. Math. Biol. 2007, 55, 803–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moler, C.B. Numerical Computing with Matlab. In Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004. [Google Scholar]
NSFD in [26] | h | Experimental Order | |
---|---|---|---|
- | |||
Quadrature rule in (6) | h | Experimental order | |
Trapezoidal Rule | - | ||
First Gregory Rule | - | ||
Second Gregory Rule | - | ||
Quad. Rule in (6) | h | Rel. Err. on | Rel. Err. on | |
---|---|---|---|---|
Trap. Rule | ||||
I Greg. Rule | ||||
II Greg. Rule | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messina, E.; Pezzella, M.; Vecchio, A. Positive Numerical Approximation of Integro-Differential Epidemic Model. Axioms 2022, 11, 69. https://doi.org/10.3390/axioms11020069
Messina E, Pezzella M, Vecchio A. Positive Numerical Approximation of Integro-Differential Epidemic Model. Axioms. 2022; 11(2):69. https://doi.org/10.3390/axioms11020069
Chicago/Turabian StyleMessina, Eleonora, Mario Pezzella, and Antonia Vecchio. 2022. "Positive Numerical Approximation of Integro-Differential Epidemic Model" Axioms 11, no. 2: 69. https://doi.org/10.3390/axioms11020069
APA StyleMessina, E., Pezzella, M., & Vecchio, A. (2022). Positive Numerical Approximation of Integro-Differential Epidemic Model. Axioms, 11(2), 69. https://doi.org/10.3390/axioms11020069