g-Expectation for Conformable Backward Stochastic Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. The Main Results of g-Expectations
4. Doob–Meyer Decomposition Theorem
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choquet, G. Theory of capacities. Ann. L’Institut Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef] [Green Version]
- Coquet, F.; Hu, Y.; Mémin, J.; Peng, S.G. Filtration-consistent nonlinear expectations and related g-expectations. Probab. Theory Relat. Fields 2002, 123, 1–27. [Google Scholar] [CrossRef]
- Peng, S.G. Nonlinear Expectations, Nonlinear Evaluations and Risk Measures. In Stochastic Methods in Finance. Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2004; pp. 165–253. [Google Scholar]
- Royer, M. Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Their Appl. 2006, 116, 1358–1376. [Google Scholar] [CrossRef] [Green Version]
- Li, H.W.; Peng, S.G. Reflected backward stochastic differential equation driven by G-Brownian motion with an upper obstacle. Stoch. Process. Their Appl. 2020, 130, 6556–6579. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Zhang, L.D.; Feng, L.C. On the backward stochastic differential equation with generator f(y)|z|2. J. Math. Anal. Appl. 2021, 500, 125102. [Google Scholar] [CrossRef]
- Nam, K. Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach. Stoch. Process. Their Appl. 2021, 141, 376–411. [Google Scholar] [CrossRef]
- Moon, J. The risk-sensitive maximum principle for controlled forward-backward stochastic differential equations. Automatica 2020, 120, 10906. [Google Scholar] [CrossRef]
- Tangpi, L. Concentration of dynamic risk measures in a Brownian filtration. Stoch. Process. Their Appl. 2018, 129, 1477–1491. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Lapitckii, A.; Guenther, M. A multi-step scheme based on cubic spline for solving backward stochastic differential equations. Appl. Numer. Math. 2020, 150, 117–138. [Google Scholar]
- Chen, X.; Ye, W.J. A study of backward stochastic differential equation on a Riemannian manifold. Electron. J. Probab. 2021, 26, 1–31. [Google Scholar] [CrossRef]
- Jing, Y.Y.; Li, Z. Averaging principle for backward stochastic differential equations. Discret. Dyn. Nat. Soc. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Zheng, G.Q. Local wellposedness of coupled backward stochastic differential equations driven by G-Brownian motions. J. Math. Anal. Appl. 2022, 506, 125540. [Google Scholar] [CrossRef]
- Luo, P.; Olivier, M.P.; Ludovic, T.P. Strong solutions of forward-backward stochastic differential equations with measurable coefficients. Stoch. Process. Their Appl. 2022, 144, 1–22. [Google Scholar] [CrossRef]
- Qiu, W.Z.; Fečkan, M.; O’Regan, D.; Wang, J. Convergence analysis for iterative learning control of conformable impulsive differential equations. Bull. Iran. Math. Soc. 2022, 48, 193–212. [Google Scholar] [CrossRef]
- Ding, Y.L.; O’Regan, D.; Wang, J. Stability analysis for conformable non-instantaneous impulsive differential equations. Bull. Iran. Math. Soc. 2021. [Google Scholar] [CrossRef]
- Ding, Y.L.; Fečkan, M.; Wang, J. Conformable linear and nonlinear non-instantaneous impulsive differential equations. Electron. J. Differ. Equ. 2020, 2020, 1–19. [Google Scholar]
- Li, M.M.; Wang, J.; O’Regan, D. Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients. Bull. Malays. Math. 2019, 40, 1791–1812. [Google Scholar] [CrossRef]
- Qiu, W.Z.; Wang, J.; O’Regan, D. Existence and Ulam stability of solutions for conformable impulsive differential equations. Bull. Iran. Math. Soc. 2020, 46, 1613–1637. [Google Scholar] [CrossRef]
- Xiao, G.L.; Wang, J.; O’Regan, D. Existence and stability of solutions to neutral conformable stochastic functional differential equations. Qual. Theory Dyn. Syst. 2022, 21, 7. [Google Scholar] [CrossRef]
- Luo, M.; Wang, J.; O’Regan, D. A class of conformable backward stochastic differential equations with jumps. Miskolc Math. Notes 2021. code: MMN-3766. [Google Scholar]
- Delong, Ł. Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications; Springer: London, UK, 2013; 288p. [Google Scholar]
- Peng, S.G. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type. Probab. Theorem Relat. Fields 1999, 113, 473–499. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Fečkan, M.; Wang, J.-R.; O’Regan, D. g-Expectation for Conformable Backward Stochastic Differential Equations. Axioms 2022, 11, 75. https://doi.org/10.3390/axioms11020075
Luo M, Fečkan M, Wang J-R, O’Regan D. g-Expectation for Conformable Backward Stochastic Differential Equations. Axioms. 2022; 11(2):75. https://doi.org/10.3390/axioms11020075
Chicago/Turabian StyleLuo, Mei, Michal Fečkan, Jin-Rong Wang, and Donal O’Regan. 2022. "g-Expectation for Conformable Backward Stochastic Differential Equations" Axioms 11, no. 2: 75. https://doi.org/10.3390/axioms11020075
APA StyleLuo, M., Fečkan, M., Wang, J. -R., & O’Regan, D. (2022). g-Expectation for Conformable Backward Stochastic Differential Equations. Axioms, 11(2), 75. https://doi.org/10.3390/axioms11020075