Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products †
Abstract
:1. Introduction
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses Theory and Applications; John Wiley: New York, NY, USA, 2003. [Google Scholar]
- Moore, E.H. On the reciprocal of general algebraic matrix (Abstract). Bull. Am. Math. Soc. 1920, 26, 394–395. [Google Scholar]
- Penrose, R. A generalized inverse for matrix. Proc. Camb. Philos. Soc. 1955, 51, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.R.; Wei, Y.M.; Qiao, S.Z. Generalized Inverses Theory and Computations; Science Press: Beijing, China, 2004. [Google Scholar]
- Campbell, S.L.; Meyer, C.D. Generalized Inverses of Linear Transformations; Dover: New York, NY, USA, 1979. [Google Scholar]
- Rao, C.R.; Mitra, S.K. Generalized Inverses of Matrices and its Applications; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Bjerhamar, A. Application of calculus of matrices to method of least squares with special reference to geodetic calculations. Trans. R. Inst. Technol. 1951, 49, 88–93. [Google Scholar]
- Simeon, B.; Fuhrer, C.; Rentrop, P. The Drazin inverse in multibody system dynamics. Numer. Math. 1993, 64, 521–539. [Google Scholar] [CrossRef]
- Staninirovic, R.; Tasic, M. Computing generalized inverses using LU factorrization of matrix product. Int. Comput. Math. 2008, 85, 1865–1878. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovic-IIic, D.S.; Milosevic, J. Reverse order laws for {1,3}-generalized inverses. Linear Multilinear Algebra 2019, 67, 613–624. [Google Scholar] [CrossRef]
- Djordjevic, D.S. Futher results on the reverse order law for generalized inverses. SIAM J. Matrix. Anal. Appl. 2007, 29, 1242–1246. [Google Scholar] [CrossRef] [Green Version]
- Greville, T.N.E. Note on the generalized inverses of a matrix products. SIAM Rev. 1966, 8, 518–521. [Google Scholar] [CrossRef]
- Hartwing, R.E. The reverse order law revisited. Linear Algebra Appl. 1986, 76, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Yan, H. The reverse order law for {1,3,4}-inverse of the product of two matrices. Appl. Math. Comput. 2010, 215, 4293–4303. [Google Scholar] [CrossRef]
- Liu, X.; Huanga, S.; Cvetkovic-Ilic, D.S. Mixed-tipe reverse-order law for {1,3}-inverses over Hilbert spaces. Appl. Math. Comput. 2012, 218, 8570–8577. [Google Scholar]
- Nikolov Radenkovic, J. Reverse order law for multiple operator product. Linear Multilinear Algebra 2016, 64, 1266–1282. [Google Scholar] [CrossRef]
- Shinozaki, N.; Sibuya, M. The Reverse order law (AB)−=B−A−. Linear Algebra Appl. 1974, 9, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.G. Reverse order laws for generalized inverses of multiple matrix products. Linear Algebra Appl. 1994, 211, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Wei, M. Reverse order laws for generalized inverse of multiple matrix products. Linear Algebra Appl. 1999, 293, 273–288. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Gao, W. Reverse order laws for least squares g-inverses and minimum-norm g-inverses of products of two matrices. Linear Algebra Appl. 2002, 342, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.P.; Zheng, B. The reverse order laws for {1,2,3}-and{1,2,4}-Inverses of a two-matrix product. Appl. Math. Lett. 2008, 21, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.P.; Liu, Z.S. The Forward Order Law for Least Square g-Inverse of Multiple Matrix Products. Mathematics 2019, 7, 277. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.P.; Qin, Y.Y. Reverse order law for weighted Moore-Penrose inverses of multiple matrix products. Math. Inequal. Appl. 2014, 17, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.S.; Xiong, Z.P. The forward order laws for {1,2,3}- and {1,2,4}-inverses of a three matrix products. Filomat 2018, 32, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.S.; Xiong, Z.P.; Qin, Y.Y. A note on the forward order law for least square g-inverse of three matrix products. Comput. Appl. Math. 2019, 38, 48. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Xiong, Z.P.; Zhou, W.N. On the Drazin inverse and M-P inverse for sum of matrices. Oper. Matrices 2021, 15, 209–223. [Google Scholar] [CrossRef]
- Xiong, Z.P.; Zheng, B. Forward order law for the generalized inverses of multiple matrix products. J. Appl. Math. Comput. 2007, 25, 415–424. [Google Scholar] [CrossRef]
- Tian, Y.G. More on maximal and minimal ranks of Schur complements with applications. Appl. Math. Comput. 2004, 152, 675–692. [Google Scholar] [CrossRef]
- Marsaglia, G.; Styan, G.P. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 1974, 2, 269–292. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Xiong, Z.; Qin, Y. Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products. Axioms 2022, 11, 123. https://doi.org/10.3390/axioms11030123
Zhou W, Xiong Z, Qin Y. Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products. Axioms. 2022; 11(3):123. https://doi.org/10.3390/axioms11030123
Chicago/Turabian StyleZhou, Wanna, Zhiping Xiong, and Yingying Qin. 2022. "Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products" Axioms 11, no. 3: 123. https://doi.org/10.3390/axioms11030123
APA StyleZhou, W., Xiong, Z., & Qin, Y. (2022). Forward Order Law for the Reflexive Inner Inverse of Multiple Matrix Products. Axioms, 11(3), 123. https://doi.org/10.3390/axioms11030123