Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials
Abstract
:1. Introduction and Preliminaries
2. Initial Taylor Coefficients Estimates for the Functions of
3. Fekete–Szegő Inequality for the Function Class
4. The Subclass of Bi-Univalent Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.S.; Kim, T.; Rim, S.H. Some identities involving Gegenbauer polynomials. Adv. Differ. Equ. 2012, 2012, 219. [Google Scholar] [CrossRef] [Green Version]
- Al-Salam, W.A.; Carlitz, L. The Gegenbauer addition theorem. J. Math. Phys. 1963, 42, 147–156. [Google Scholar] [CrossRef]
- McFadden, J.A. A diagonal expansion in Gegenbauer polynomials for a class of second-order probability densities. SIAM J. Appl. Math. 1966, 14, 1433–1436. [Google Scholar] [CrossRef]
- Stein, E.M.; Weiss, G. Introduction to Fourier Analysis in Euclidean Space; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comp. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Robertson, M.S. On the coefficients of typically-real functions. Bull. Am. Math. Soc. 1935, 41, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Szynal, J. An extension of typically-real functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1994, 48, 193–201. [Google Scholar]
- Hallenbeck, D.J. Convex hulls and extreme points of families of starlike and close-to-convex mappings. Pac. J. Math. 1975, 57, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series, 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Srivastava, H.M. A note on the Fekete-Szego problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. 2017, 101, 143–149. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Hamidi, S.G. Advances on the coefficients of bi-prestarlike functions. Comptes Rendus Acad. Sci. Paris 2016, 354, 980–985. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Yalçın, S. On λ pseudo bi-starlike functions related (p;q)-Lucas polynomial. Lib. Math. 2019, 39, 59–77. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, S.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2018, 43, 1873–1879. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kamali, M.; Urdaletova, A. A study of the Fekete-Szego functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials. AIMS Math. 2022, 7, 2568–2584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Wanas, A.K.; Murugusundaramoorthy, G. A certain family of bi-univalent functions associated with the Pascal distribution series based upon the Horadam polynomials. Surv. Math. Appl. 2021, 16, 193–205. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Güney, H.Ö.; Vijaya, K. Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial. Adv. Stud. Contemp. Math. 2022, 32, 5–15. [Google Scholar]
- Wanas, A.K. New families of bi-univalent functions governed by Gegenbauer Polynomials. Earthline J. Math. Sci. 2021, 7, 403–427. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szego inequality for analytic and bi-univalent functions subordinate to Gegenbauer Polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Yamakawa, R. Certain Subclasses of p-Valently Starlike Functions with negative coefficients. In Current Topics in Analytic Function Theory; Srivastava, H.M., Owa, S., Eds.; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 1992; pp. 393–402. [Google Scholar]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Zaprawa, P. On the Fekete-Szego problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Obradović, M.; Yaguchi, T.; Saitoh, H. On some conditions for univalence and starlikeness in the unit disc. Rend. Math. Ser. VII 1992, 12, 869–877. [Google Scholar]
- Lashin, A.Y. Coefficient estimates for two subclasses of analytic and bi-univalent functions. Ukr. Math. J. 2019, 70, 1484–1492. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugusundaramoorthy, G.; Bulboacă, T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms 2022, 11, 92. https://doi.org/10.3390/axioms11030092
Murugusundaramoorthy G, Bulboacă T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms. 2022; 11(3):92. https://doi.org/10.3390/axioms11030092
Chicago/Turabian StyleMurugusundaramoorthy, Gangadharan, and Teodor Bulboacă. 2022. "Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials" Axioms 11, no. 3: 92. https://doi.org/10.3390/axioms11030092
APA StyleMurugusundaramoorthy, G., & Bulboacă, T. (2022). Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms, 11(3), 92. https://doi.org/10.3390/axioms11030092