Statistically Convergent Sequences in Intuitionistic Fuzzy Metric Spaces
Abstract
:1. Introduction
2. Intuitionistic Fuzzy Metric Space
- (1)
- ;
- (2)
- and ;
- (3)
- If and , then ;
- (4)
- ∗ is continuous.
- (1)
- ;
- (2)
- and ;
- (3)
- If , then ;
- (4)
- ⋄ is continuous.
- (IF1)
- ;
- (IF2)
- ;
- (IF3)
- if and only if ;
- (IF4)
- ;
- (IF5)
- ;
- (IF6)
- is continuous;
- (IF7)
- ;
- (IF8)
- if and only if ;
- (IF9)
- ;
- (IF10)
- ;
- (IF11)
- is continuous.
- (i)
- is called convergent to x if for all and there exists such that and for all .It is denoted by as .∗ and as for each .
- (ii)
- is called a Cauchy sequence if, for and , there exists such that and for all .
- (iii)
- is called (M,N)-complete if every Cauchy sequence is convergent.
- (i)
- A sequence is called statistically convergent to if for every and .
- (ii)
- A sequence is called a statistically Cauchy sequence if, for every and , there exists such that .
3. Statical Convergence in Intuitionistic Fuzzy Metric Space
- (i)
- is statistically convergent to ;
- (ii)
- ;
- (iii)
- .
- (i)
- A mapping is called an isometry if for each and , and .
- (ii)
- and are called isometric if there exists an isometry from onto .
- (iii)
- An intuitionistic fuzzy completion of is a complete intuitionistic fuzzy metric space such that is isometric to a dense subspace of .
- (iv)
- is called completable if it leads to an intuitionistic fuzzy metric completion.
4. Statically Complete Intuitionistic Fuzzy Metric Space
- (i)
- is statistically Cauchy.
- (ii)
- There exists an increasing index sequence of the natural numbers such that is Cauchy and .
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, O.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetika 1975, 11, 326–334. [Google Scholar]
- George, A.; Veeramani, P. On some result in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Veeramani, P. Some theorems in fuzzy metric spaces. J. Fuzzy Math. 1995, 3, 933–940. [Google Scholar]
- Gregori, V.; Morillas, S.; Sapena, A. Examples of fuzzy metrics and applications. Fuzzy Sets Syst. 2011, 170, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Shostak, A. George-Veeramani Fuzzy Metrics Revised. Axioms 2018, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 29, 1073–1078. [Google Scholar] [CrossRef]
- Gregori, V.; Lopez-Crevillen, A.; Morillas, S.; Sapena, A. On convergence in fuzzy metic spaces. Topol. Appl. 2009, 156, 3002–3006. [Google Scholar] [CrossRef] [Green Version]
- Gregori, V.; Miñana, J.; Miravet, D. Extended Fuzzy Metrics and Fixed Point Theorems. Mathematics 2019, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Gopal, D.; Sintunavarat, W. A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets Syst. 2018, 350, 85–94. [Google Scholar] [CrossRef]
- Turkoglu, D.; Alaca, C.; Cho, Y.J.; Yıldız, C. Common fixed point theorems in intuiitonistic fuzzy metric spaces. J. Appl. Math Comput. 2006, 22, 411–424. [Google Scholar] [CrossRef]
- Vasuki, R.; Veeramani, P. Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 2003, 135, 415–417. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Fixed points and convergence results for a class of contractive mappings. J. Nonlinear Var. Anal. 2021, 5, 665–671. [Google Scholar]
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Steinhaus, H. Sur la convergence ordinarie et la convergence asymptotique. Colloq. Math. 1951, 2, 73–74. [Google Scholar]
- Fridy, J.A. On statistical convergence. Analysis 1985, 5, 301–313. [Google Scholar] [CrossRef]
- Li, K.D.; Lin, S.; Ge, Y. On statistical convergence in cone metric spaces. Topol. Appl. 2015, 196, 641–651. [Google Scholar] [CrossRef]
- Maio, G.D.; Kočinac, L. Statistical convergence in topology. Topol. Appl. 2008, 156, 28–45. [Google Scholar] [CrossRef] [Green Version]
- Changqing, L.; Zhangb, Y.; Zhanga, J. On statistical convergence in fuzzy metric spaces. J. Intell. Fuzzy Syst. 2020, 39, 3987–3993. [Google Scholar]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pacific J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazar Varol, B. Statistically Convergent Sequences in Intuitionistic Fuzzy Metric Spaces. Axioms 2022, 11, 159. https://doi.org/10.3390/axioms11040159
Pazar Varol B. Statistically Convergent Sequences in Intuitionistic Fuzzy Metric Spaces. Axioms. 2022; 11(4):159. https://doi.org/10.3390/axioms11040159
Chicago/Turabian StylePazar Varol, Banu. 2022. "Statistically Convergent Sequences in Intuitionistic Fuzzy Metric Spaces" Axioms 11, no. 4: 159. https://doi.org/10.3390/axioms11040159
APA StylePazar Varol, B. (2022). Statistically Convergent Sequences in Intuitionistic Fuzzy Metric Spaces. Axioms, 11(4), 159. https://doi.org/10.3390/axioms11040159