A MULTIMOORA-Based Risk Evaluation Approach for CCUS Projects by Utilizing D Numbers Theory
Abstract
:1. Introduction
2. Preliminaries
2.1. D Numbers
2.2. MULTIMOORA Method
2.2.1. The Ratio System Method (RSM)
2.2.2. The Reference Point Method (RPM)
2.2.3. The Full-Multiplicative Form (FMF)
3. Research Methodology
3.1. A Comprehensive Risk Indicator System for Evaluating CCUS Projects
3.2. An Integrated Decision-Making Model
3.2.1. Problem Description of Risk Evaluation for CCUS Projects
3.2.2. The New Combination Rule for D Numbers
3.2.3. Define the Weights of the Risk Evaluators
3.2.4. Calculate the Aggregated Risk Evaluation Matrix
3.2.5. The MULTIMOORA-Based Risk Evaluation Approach
4. Case Study
4.1. Case Description
4.2. Decision-Making Process
4.3. Results and Analysis
4.4. Sensitivity Analysis
4.5. Comparison and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Abuelgasim, S.; Wang, W.; Abdalazeez, A. A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress. Sci. Total Environ. 2021, 764, 142892. [Google Scholar] [CrossRef] [PubMed]
- Alalwan, H.A.; Alminshid, A.H. CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci. Total Environ. 2021, 788, 147850. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Żyłka, A.; Czakiert, T.; Kulicki, K.; Jankowska, S.; Nowak, W. A 1.5 D model of a complex geometry laboratory scale fuidized bed clc equipment. Powder Technol. 2017, 316, 592–598. [Google Scholar] [CrossRef]
- Álvarez Criado, Y.; Arias Rozada, B.; Abanades García, J.C. Calcium looping CO2 capture system for back-up power plants. Energy Environ. Sci. 2017, 10, 1994–2004. [Google Scholar] [CrossRef] [Green Version]
- Zylka, A.; Krzywanski, J.; Czakiert, T.; Idziak, K.; Sosnowski, M.; Grabowska, K.; Prauzner, T.; Nowak, W. The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system. Fuel 2019, 255, 115776. [Google Scholar] [CrossRef]
- Krzywanski, J.; Czakiert, T.; Nowak, W.; Shimizu, T.; Żyłka, A.; Idziak, K.; Sosnowski, M.; Grabowska, K. Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: A comprehensive model. Energy 2022, 251, 123896. [Google Scholar] [CrossRef]
- Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; Luis, F. Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. Sci. 2012, 38, 215–282. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.H. Modeling and simulation of carbon emission-related issues. Energies 2019, 12, 2531. [Google Scholar] [CrossRef] [Green Version]
- Change, P.C. Global Warming of 1.5 C; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- IEA. Energy Technology Perspectives 2017; IEA: Paris, France, 2017; Available online: https://www.iea.org/reports/energy-technology-perspectives-2017 (accessed on 17 February 2022).
- Li, Q.; Liu, G.; Cai, B.; Leamon, G.; Liu, L.C.; Chen, Z.A.; Li, X. Public awareness of the environmental impact and management of carbon dioxide capture, utilization and storage technology: The views of educated people in China. Clean Technol. Environ. Policy 2017, 19, 2041–2056. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, I.B.; Han, J. Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference. Appl. Energy 2019, 238, 34–44. [Google Scholar] [CrossRef]
- Qin, J.; Li Yl, W.; Wu, D. CCUS global progress and China’s policy suggestions. Pet. Geol. Recovery Effic. 2020, 27, 20–28. [Google Scholar]
- Yao, X.; Zhong, P.; Zhang, X.; Zhu, L. Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy 2018, 121, 519–533. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.; Zhang, J.T.; Liu, L.C.; Li, X.; Jia, L. Positioning and revision of CCUS technology development in China. Int. J. Greenh. Gas Control. 2016, 46, 282–293. [Google Scholar] [CrossRef]
- Minchener, A.J. Gasification based CCS challenges and opportunities for China. Fuel 2014, 116, 904–909. [Google Scholar] [CrossRef]
- He, M.; Luis, S.; Rita, S.; Ana, G.; Euripedes, V., Jr.; Zhang, N. Risk assessment of CO2 injection processes and storage in carboniferous formations: A review. J. Rock Mech. Geotech. Eng. 2011, 3, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.C.; Li, Q.; Zhang, J.T.; Cao, D. Toward a framework of environmental risk management for CO2 geological storage in China: Gaps and suggestions for future regulations. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 191–207. [Google Scholar] [CrossRef]
- Jiang, K.; Ashworth, P.; Zhang, S.; Liang, X.; Sun, Y.; Angus, D. China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109601. [Google Scholar] [CrossRef]
- Viebahn, P.; Vallentin, D.; Höller, S. Prospects of carbon capture and storage (CCS) in China’s power sector—An integrated assessment. Appl. Energy 2015, 157, 229–244. [Google Scholar] [CrossRef] [Green Version]
- China, M. Technical Guideline on Environmental Risk Assessment for Carbon Dioxide Capture, Utilization and Storage (on Trial); Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2016.
- Gerstenberger, M.C.; Christophersen, A.; Buxton, R.; Allinson, G.; Hou, W.; Leamon, G.; Nicol, A. Integrated risk assessment for CCS. Energy Procedia 2013, 37, 2775–2782. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. Risk Management–Principles and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2009; pp. 15–21. [Google Scholar]
- Dias, S.; Le Guen, Y.; Poupard, O.; Shtivelman, V. Risk assessment of MUSTANG project experimental site–Methodological development. Energy Procedia 2011, 4, 4109–4116. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, J.; Busby, D.; Wessel-Berg, D.; Nepveu, M.; Codreanu, D.B.; Grimstad, A.A.; Sijacic, D.; Maurand, N.; Lothe, A.; Wahl, F.; et al. Integrated carbon risk assessment (ICARAS). Energy Procedia 2013, 37, 4825–4832. [Google Scholar] [CrossRef] [Green Version]
- Hnottavange-Telleen, K. Common themes in risk evaluation among eight geosequestration projects. Energy Procedia 2013, 37, 2794–2801. [Google Scholar] [CrossRef] [Green Version]
- Agency, E. Environmental Risk Assessment for Carbon Capture and Storage 2011; Technical Report 40; Environment Agency: Bristol, UK, 2011.
- Liu, B.; Liu, S.; Xue, B.; Lu, S.; Yang, Y. Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective. Appl. Energy 2021, 303, 117624. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chattopadhyay, R.; Chakraborty, S. An integrated D-MARCOS method for supplier selection in an iron and steel industry. Decis. Mak. Appl. Manag. Eng. 2020, 3, 49–69. [Google Scholar]
- Božanić, D.; Milić, A.; Tešić, D.; Salabun, W.; Pamučar, D. D numbers–FUCOM–fuzzy RAFSI model for selecting the Group of construction machines for enabling mobility. Facta Univ. Ser. Mech. Eng. 2021, 19, 447–471. [Google Scholar] [CrossRef]
- Dempster, A. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, W. A total uncertainty measure for D numbers based on belief intervals. Int. J. Intell. Syst. 2019, 34, 3302–3316. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Liao, H. A multi-criteria decision making method based on DNMA and CRITIC with linguistic D numbers for blockchain platform evaluation. Eng. Appl. Artif. Intell. 2021, 101, 104200. [Google Scholar] [CrossRef]
- Seiti, H.; Hafezalkotob, A.; Herrera-Viedma, E. A novel linguistic approach for multi-granular information fusion and decision-making using risk-based linguistic D numbers. Inf. Sci. 2020, 530, 43–65. [Google Scholar] [CrossRef]
- Mi, X.; Tian, Y.; Kang, B. MADA problem: A new scheme based on D numbers and aggregation functions. J. Intell. Fuzzy Syst. 2021, 40, 11231–11255. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, X. A novel approach to multi-criteria group decision-making problems based on linguistic D numbers. Comput. Appl. Math. 2020, 39, 1–27. [Google Scholar] [CrossRef]
- Mi, X.; Tian, Y.; Kang, B. A hybrid multi-criteria decision making approach for assessing health-care waste management technologies based on soft likelihood function and D-numbers. Appl. Intell. 2021, 51, 6708–6727. [Google Scholar] [CrossRef]
- Pamučar, D.; Puška, A.; Željko, S.; Ćirović, G. A new intelligent MCDM model for HCW management: The integrated BWM–MABAC model based on D numbers. Expert Syst. Appl. 2021, 175, 114862. [Google Scholar] [CrossRef]
- Mo, H. A SWOT method to evaluate safety risks in life cycle of wind turbine extended by D number theory. J. Intell. Fuzzy Syst. 2021, 40, 4439–4452. [Google Scholar] [CrossRef]
- Tian, Y.; Mi, X.; Liu, L.; Kang, B. A new soft likelihood function based on d numbers in handling uncertain information. Int. J. Fuzzy Syst. 2020, 22, 2333–2349. [Google Scholar] [CrossRef]
- Brauers, W.K.; Zavadskas, E.K. The MOORA method and its application to privatization in a transition economy. Control. Cybern. 2006, 35, 445–469. [Google Scholar]
- Brauers, W.K.M.; Zavadskas, E.K. Project management by MULTIMOORA as an instrument for transition economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef]
- Mi, X.; Liao, H.; Liao, Y.; Lin, Q.; Lev, B.; Al-Barakati, A. Green suppler selection by an integrated method with stochastic acceptability analysis and MULTIMOORA. Technol. Econ. Dev. Econ. 2020, 26, 549–572. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Q.; Liu, H.C. A meta-evaluation model on science and technology project review experts using IVIF-BWM and MULTIMOORA. Expert Syst. Appl. 2021, 168, 114236. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Lescauskiene, I.; Usovaite, A. MULTIMOORA under interval-valued neutrosophic sets as the basis for the quantitative heuristic evaluation methodology HEBIN. Mathematics 2021, 9, 66. [Google Scholar] [CrossRef]
- Fedajev, A.; Stanujkic, D.; Karabašević, D.; Brauers, W.K.; Zavadskas, E.K. Assessment of progress towards “Europe 2020” strategy targets by using the MULTIMOORA method and the Shannon Entropy Index. J. Clean. Prod. 2020, 244, 118895. [Google Scholar] [CrossRef]
- Hafezalkotob, A.; Hafezalkotob, A.; Liao, H.; Herrera, F. Interval MULTIMOORA method integrating interval Borda rule and interval best–worst-method-based weighting model: Case study on hybrid vehicle engine selection. IEEE Trans. Cybern. 2019, 50, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.; Mishra, A.R. Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection. Expert Syst. Appl. 2021, 182, 115267. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Roussanaly, S.; Anantharaman, R.; Lindqvist, K.; Zhai, H.; Rubin, E. Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J. Membr. Sci. 2016, 511, 250–264. [Google Scholar] [CrossRef]
- Ramírez, A.; Hoogwijk, M.; Hendriks, C.; Faaij, A. Using a participatory approach to develop a sustainability framework for carbon capture and storage systems in The Netherlands. Int. J. Greenh. Gas Control 2008, 2, 136–154. [Google Scholar] [CrossRef] [Green Version]
- Rosa, L.; Reimer, J.A.; Went, M.S.; D’Odorico, P. Hydrological limits to carbon capture and storage. Nat. Sustain. 2020, 3, 658–666. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Environmental impact assessment based on D numbers. Expert Syst. Appl. 2014, 41, 635–643. [Google Scholar] [CrossRef]
- Xia, J.; Feng, Y.; Liu, L.; Liu, D.; Fei, L. On entropy function and reliability indicator for D numbers. Appl. Intell. 2019, 49, 3248–3266. [Google Scholar] [CrossRef]
- Karaca, C.; Ulutaş, A. Supplier performance evaluation by using SWARA and MULTIMOORA. Econ. Manag. Econom. 2017, 137–151. [Google Scholar]
- Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
Dimension | Indicator | Meaning | References |
---|---|---|---|
Economy | |||
Cost | The economic cost of the CCUS project, including investment cost, operation and maintenance costs, unit capture costs, payback period uncertainty, and affordability. | [51] | |
Market | The economic system in CCUS market allocation that plays a fundamental role includes market obstacle, market uncertainty, market competition, and market maturity. | [52] | |
Industrial development | Technology, market size, and value of CO2 capture. It includes the development of the capture industry, transportation industry, storage industry, utilization industry, and monitoring industry. | [15,23] | |
Society | |||
Social acceptance | The degree to which CCUS projects are accepted by the public, stakeholders, governments, and NGOs, including fairness, equality, access, and so on. | [23] | |
Justice | Including equal management between regions and generations, equal availability for regions and generations, equal accessibility for regions and generations, and equal negative impacts for regions and generations | [52] | |
Social benefits | The contribution of the CCUS project to society. | Proposed by authors | |
Environment | |||
Climate pollution | The CCUS process causes certain substances to enter the atmosphere and, thus, endanger human health, including air pollution, soil pollution, water pollution, and so on. | [12] | |
Resources | Resources to meet human needs in CCUS projects, including the energy consumed during the life cycle of a CCUS and the diversity of energy sources. | [52,53] | |
Health and security | Including capture safety, transportation safety, storage safety, utilization safety, monitoring safety, alarm and management systems, impact on human health, catastrophic events, etc. | [52] | |
Governance | |||
Management | Participation degree of government, enterprises, research institutions, and the public in management. | [16,29] | |
Policy and regulation | National laws and local government support for CCUS programs, including domestic policies and regulations and international policies and regulations. | [29] | |
Demonstration | Demonstration to other industries in carbon capture, transportation, utilization, storage, and monitoring. | [16] | |
Technology | |||
Technological advancement | The maturity, flexibility, complexity, and reliability of CCUS technology. It also includes the adoption of technical processes and the use of equipment manufacturer process methods in CCUS. | [16] | |
Technological potential | The development of carbon transport technologies includes the application and expansion of technologies, knowledge created, and innovative breakthroughs. | [20] | |
Technology management | The process of efficiently collecting, storing, processing, and applying CCUS data using computer hardware and software technologies. | [29] |
Assessment Grade | Numerical Rating | Description |
---|---|---|
+3 | Extremely good | |
+2 | Good | |
+1 | Somewhat good | |
N | 0 | Medium |
−1 | Somewhat poor | |
−2 | Poor | |
−3 | Extremely poor |
DMs/Indicates | Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|---|
{(2, 0.3),(3, 0.5)} | {(1, 0.4),(2, 0.6)} | {(0, 0.4),(1, 0.6)} | {(−1, 0.5),(2, 0.5)} | |
{(1, 0.4),(2, 0.6)} | {(0, 0.3),(1, 0.7)} | {(1, 0.6)} | {(0, 0.8),(1, 0.2)} | |
⋯ | ||||
{(0, 0.5),(1, 0.5)} | {(1, 0.3),(2, 0.6)} | {(1, 0.5),(2, 0.5)} | {(1, 0.8),(2, 0.2)} | |
{(2, 0.4),(3, 0.5)} | {(1, 0.2),(2, 0.8)} | {(0, 0.9),(1, 0.1)} | {(−1, 1.0)} | |
{(1, 0.7),(2, 0.3)} | {(0, 0.7),(1, 0.3)} | {(1, 0.7),(2, 0.2)} | {(0, 0.8),(1, 0.2)} | |
⋯ | ||||
{(0, 1.0)} | {(1, 0.1),(2, 0.9)} | {(1, 0.6),(2, 0.4)} | {(1, 0.6),(2, 0.4)} | |
{(2, 0.6),(3, 0.3)} | {(1, 0.7),(2, 0.3)} | {(1, 1.0)} | {(−1, 0.7),(2, 0.3)} | |
{(1, 0.5),(2, 0.5)} | {(0, 0.8),(1, 0.2)} | {(1, 0.3),(2, 0.6)} | {(0, 1.0)} | |
⋯ | ||||
{(0, 0.8),(1, 0.2)} | {(1, 0.6),(2, 0.3)} | {(1, 0.3),(2, 0.7)} | {(1, 0.6),(2, 0.4)} |
Indicates | Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|---|
{(2, 0.09),(2.25, 0.26) (2.5, 0.33),(2.75, 0.24) (3, 0.08)} | {(1, 0.07),(1.25, 0.24) (1.5, 0.33),(1.75, 0.26) (2, 0.1)} | {(0, 0.15),(0.25, 0.32) (0.5, 0.33),(0.75, 0.19) (1, 0.01)} | {(−1, 0.14),(−0.125, 0.31) (0.5, 0.33),(1.25, 0.21) (2, 0.02)} | |
{(1, 0.1),(1.25, 0.27) (1.5, 0.33),(1.75, 0.23) (2, 0.07)} | {(0, 0.1),(0.25, 0.27) (0.5, 0.33),(0.75, 0.23) (1, 0.07)} | {(1, 0.1),(1.25, 0.26) (1.5, 0.33),(1.75, 0.24) (2, 0.07)} | {(0, 0.15),(0.25, 0.31) (0.5, 0.33),(0.75, 0.19) (1, 0.02)} | |
⋯ | ||||
{(0, 0.15),(0.25, 0.32) (0.5, 0.33),(0.75, 0.19) (1, 0.01)} | {(1, 0.06),(1.25, 0.22) (1.5, 0.33),(1.75, 0.28) (2, 0.11)} | {(1, 0.08),(1.25, 0.25) (1.5, 0.33),(1.75, 0.25) (2, 0.09)} | {(1, 0.1),(1.25, 0.27) (1.5, 0.33),(1.75, 0.23) (2, 0.07)} |
Indicates | Option 1 | Option 2 | Option 3 | Option 4 | |||
---|---|---|---|---|---|---|---|
2.49 | 1.52 | 0.40 | 0.29 | 0.0678 | 0.1028 | 0.1028 | |
1.48 | 0.48 | 1.48 | 0.41 | 0.0589 | 0.0525 | 0.0456 | |
2.36 | 1.31 | 3.28 | 1.83 | 0.0559 | 0.0665 | 0.0548 | |
0.22 | 1.32 | 3.46 | 2.54 | 0.0661 | 0.1029 | 0.1004 | |
0.54 | 0.79 | 3.92 | 1.92 | 0.0786 | 0.0436 | 0.0506 | |
2.52 | 2.43 | 3.70 | 3.74 | 0.0481 | 0.0717 | 0.0509 | |
1.41 | 4.12 | 4.24 | 4.53 | 0.0364 | 0.1237 | 0.0664 | |
2.42 | 2.51 | 2.83 | 1.84 | 0.0928 | 0.0324 | 0.0444 | |
1.72 | 0.38 | 3.61 | 1.54 | 0.0515 | 0.0080 | 0.0061 | |
2.97 | 0.42 | 2.81 | 0.31 | 0.0988 | 0.0857 | 0.1249 | |
0.84 | 0.52 | 2.28 | 3.52 | 0.0943 | 0.1028 | 0.1430 | |
2.63 | 4.05 | 3.53 | 2.54 | 0.0369 | 0.0272 | 0.0148 | |
2.61 | 3.38 | 3.63 | 3.50 | 0.0237 | 0.0668 | 0.0234 | |
2.97 | 0.46 | 1.36 | 1.79 | 0.1129 | 0.0810 | 0.1349 | |
0.39 | 1.54 | 1.50 | 1.48 | 0.0773 | 0.0324 | 0.0370 |
Options | RSM | PRM | FMF | Geometric Mean Method | ||||
---|---|---|---|---|---|---|---|---|
Ranking | Ranking | Ranking | Ranking | |||||
Option 1 | 0.2612 | 3 | 0.0889 | 3 | 0.4358 | 3 | 1.0857 | 3 |
Option 2 | 0.1074 | 4 | 0.0996 | 4 | 0.2876 | 4 | 0.6771 | 4 |
Option 3 | 0.4528 | 1 | 0.0579 | 1 | 0.8210 | 1 | 1.8590 | 1 |
Option 4 | 0.3376 | 2 | 0.0806 | 2 | 0.5872 | 2 | 1.3497 | 2 |
Method | Main Contribution | Application | Aggregation Method | Ranking |
---|---|---|---|---|
[33] | Uncertainty quantification of D numbers | Feature evaluation for classification | - | |
[34] | LDNs, DNMA, and CRITIC | Blockchain platform evaluation | Double normalization- based multiple aggregation | |
[36] | Consider the attitudinal feature of decision makers | Car performance assessment | Power ordered weighted averaging operator | |
[38] | Consider multi-granular linguistic terminology | Health-care waste management technologies assessment | Soft likelihood function | |
[40] | Strengths-weaknesses- opportunities-threats | Assessment of safety risks in life cycle of wind turbine | Traditional fusion rules of D numbers | |
[41] | Deal with uncertain information of D numbers | Investigation of the criminal case | Soft likelihood function | |
Our method | Novel fusion rule A index system D_MULTIMOORA method | CCUS project risk assessment | Novel fusion rule |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Che, L.; Wan, L.; Fei, L. A MULTIMOORA-Based Risk Evaluation Approach for CCUS Projects by Utilizing D Numbers Theory. Axioms 2022, 11, 204. https://doi.org/10.3390/axioms11050204
Li P, Che L, Wan L, Fei L. A MULTIMOORA-Based Risk Evaluation Approach for CCUS Projects by Utilizing D Numbers Theory. Axioms. 2022; 11(5):204. https://doi.org/10.3390/axioms11050204
Chicago/Turabian StyleLi, Peilin, Lina Che, Luhe Wan, and Liguo Fei. 2022. "A MULTIMOORA-Based Risk Evaluation Approach for CCUS Projects by Utilizing D Numbers Theory" Axioms 11, no. 5: 204. https://doi.org/10.3390/axioms11050204
APA StyleLi, P., Che, L., Wan, L., & Fei, L. (2022). A MULTIMOORA-Based Risk Evaluation Approach for CCUS Projects by Utilizing D Numbers Theory. Axioms, 11(5), 204. https://doi.org/10.3390/axioms11050204