A Cross-Country European Efficiency Measurement of Maritime Transport: A Data Envelopment Analysis Approach
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Proposed Research Framework
3.2. DEA Malmquist Model
- MPI value > 1 indicates that the productivity gain is from the combined effect of average technology progress and relative efficiency improvement.
- MPI value = 1 indicates that the productivity is constant.
- MPI value < 1 indicates that the productivity loss is from the combined effect of average technology regress and relative efficiency improvement.
3.3. DEA Epsilon-Based Measure Efficiency
4. Empirical Analysis
4.1. Data Collection
4.2. DEA Malmquist Model Results
4.3. DEA-EBM Results
4.4. Discussions
5. Conclusions, Limitations and Future Studies
5.1. Conclusions
5.2. Limitations and Future Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | I1 | I2 | I3 | I4 | I5 | O1 | O2 | |
---|---|---|---|---|---|---|---|---|
2016 | I1 | 1.000 | 0.544 | 0.547 | 0.669 | 0.266 | 0.280 | 0.862 |
I2 | 0.544 | 1.000 | 0.974 | 0.761 | 0.240 | 0.366 | 0.635 | |
I3 | 0.547 | 0.974 | 1.000 | 0.754 | 0.205 | 0.292 | 0.644 | |
I4 | 0.669 | 0.761 | 0.754 | 1.000 | 0.292 | 0.301 | 0.874 | |
I5 | 0.266 | 0.240 | 0.205 | 0.292 | 1.000 | 0.931 | 0.227 | |
O1 | 0.280 | 0.366 | 0.292 | 0.301 | 0.931 | 1.000 | 0.222 | |
O2 | 0.862 | 0.635 | 0.644 | 0.874 | 0.227 | 0.222 | 1.000 | |
2017 | I1 | 1.000 | 0.538 | 0.561 | 0.665 | 0.253 | 0.858 | 0.253 |
I2 | 0.538 | 1.000 | 0.976 | 0.743 | 0.225 | 0.633 | 0.225 | |
I3 | 0.561 | 0.976 | 1.000 | 0.745 | 0.202 | 0.652 | 0.202 | |
I4 | 0.665 | 0.743 | 0.745 | 1.000 | 0.275 | 0.895 | 0.275 | |
I5 | 0.253 | 0.225 | 0.202 | 0.275 | 1.000 | 0.222 | 1.000 | |
O1 | 0.858 | 0.633 | 0.652 | 0.895 | 0.222 | 1.000 | 0.222 | |
O2 | 0.253 | 0.225 | 0.202 | 0.275 | 1.000 | 0.222 | 1.000 | |
2018 | I1 | 1.000 | 0.562 | 0.574 | 0.698 | 0.274 | 0.323 | 0.866 |
I2 | 0.562 | 1.000 | 0.976 | 0.743 | 0.226 | 0.356 | 0.645 | |
I3 | 0.574 | 0.976 | 1.000 | 0.736 | 0.189 | 0.289 | 0.651 | |
I4 | 0.698 | 0.743 | 0.736 | 1.000 | 0.303 | 0.329 | 0.904 | |
I5 | 0.274 | 0.226 | 0.189 | 0.303 | 1.000 | 0.935 | 0.236 | |
O1 | 0.323 | 0.356 | 0.289 | 0.329 | 0.935 | 1.000 | 0.259 | |
O2 | 0.866 | 0.645 | 0.651 | 0.904 | 0.236 | 0.259 | 1.000 | |
2019 | I1 | 1.000 | 0.559 | 0.583 | 0.710 | 0.286 | 0.309 | 0.890 |
I2 | 0.559 | 1.000 | 0.974 | 0.723 | 0.240 | 0.354 | 0.636 | |
I3 | 0.583 | 0.974 | 1.000 | 0.725 | 0.196 | 0.283 | 0.653 | |
I4 | 0.710 | 0.723 | 0.725 | 1.000 | 0.287 | 0.297 | 0.899 | |
I5 | 0.286 | 0.240 | 0.196 | 0.287 | 1.000 | 0.946 | 0.248 | |
O1 | 0.309 | 0.354 | 0.283 | 0.297 | 0.946 | 1.000 | 0.256 | |
O2 | 0.890 | 0.636 | 0.653 | 0.899 | 0.248 | 0.256 | 1.000 |
Year | Inputs | I1 | I2 | I3 | I4 | I5 |
---|---|---|---|---|---|---|
2016 | Short sea shipping (I1) | 0.000 | 0.219 | 0.197 | 0.212 | 0.220 |
Energy consumption in transport (I2) | 0.219 | 0.000 | 0.198 | 0.187 | 0.229 | |
Labor force (I3) | 0.197 | 0.198 | 0.000 | 0.175 | 0.227 | |
Containers (I4) | 0.212 | 0.187 | 0.175 | 0.000 | 0.207 | |
Number and gross tonnage of vessels (I5) | 0.220 | 0.229 | 0.227 | 0.207 | 0.000 | |
2017 | Short sea shipping (I1) | 0.000 | 0.231 | 0.197 | 0.218 | 0.224 |
Energy consumption in transport (I2) | 0.231 | 0.000 | 0.185 | 0.224 | 0.203 | |
Labor force (I3) | 0.197 | 0.185 | 0.000 | 0.201 | 0.201 | |
Containers (I4) | 0.218 | 0.224 | 0.201 | 0.000 | 0.206 | |
Number and gross tonnage of vessels (I5) | 0.224 | 0.203 | 0.201 | 0.206 | 0.000 | |
2018 | Short sea shipping (I1) | 0.000 | 0.248 | 0.212 | 0.202 | 0.215 |
Energy consumption in transport (I2) | 0.248 | 0.000 | 0.156 | 0.212 | 0.220 | |
Labor force (I3) | 0.212 | 0.156 | 0.000 | 0.206 | 0.201 | |
Containers (I4) | 0.202 | 0.212 | 0.206 | 0.000 | 0.202 | |
Number and gross tonnage of vessels (I5) | 0.215 | 0.220 | 0.201 | 0.202 | 0.000 | |
2019 | Short sea shipping (I1) | 0.000 | 0.230 | 0.218 | 0.209 | 0.212 |
Energy consumption in transport (I2) | 0.230 | 0.000 | 0.154 | 0.221 | 0.219 | |
Labor force (I3) | 0.218 | 0.154 | 0.000 | 0.209 | 0.202 | |
Containers (I4) | 0.209 | 0.221 | 0.209 | 0.000 | 0.210 | |
Number and gross tonnage of vessels (I5) | 0.212 | 0.219 | 0.202 | 0.210 | 0.000 |
Year | Inputs | I1 | I2 | I3 | I4 | I5 |
---|---|---|---|---|---|---|
2016 | Short sea shipping (I1) | 1.000 | 0.562 | 0.606 | 0.576 | 0.560 |
Energy consumption in transport (I2) | 0.562 | 1.000 | 0.603 | 0.626 | 0.541 | |
Labor force (I3) | 0.606 | 0.603 | 1.000 | 0.650 | 0.547 | |
Containers (I4) | 0.576 | 0.626 | 0.650 | 1.000 | 0.586 | |
Number and gross tonnage of vessels (I5) | 0.560 | 0.541 | 0.547 | 0.586 | 1.000 | |
2017 | Short sea shipping (I1) | 1.000 | 0.539 | 0.606 | 0.564 | 0.552 |
Energy consumption in transport (I2) | 0.539 | 1.000 | 0.630 | 0.551 | 0.594 | |
Labor force (I3) | 0.606 | 0.630 | 1.000 | 0.598 | 0.598 | |
Containers (I4) | 0.564 | 0.551 | 0.598 | 1.000 | 0.589 | |
Number and gross tonnage of vessels (I5) | 0.552 | 0.594 | 0.598 | 0.589 | 1.000 | |
2018 | Short sea shipping (I1) | 1.000 | 0.505 | 0.576 | 0.596 | 0.571 |
Energy consumption in transport (I2) | 0.505 | 1.000 | 0.688 | 0.577 | 0.559 | |
Labor force (I3) | 0.576 | 0.688 | 1.000 | 0.588 | 0.597 | |
Containers (I4) | 0.596 | 0.577 | 0.588 | 1.000 | 0.596 | |
Number and gross tonnage of vessels (I5) | 0.571 | 0.559 | 0.597 | 0.596 | 1.000 | |
2019 | Short sea shipping (I1) | 1.000 | 0.540 | 0.565 | 0.581 | 0.576 |
Energy consumption in transport (I2) | 0.540 | 1.000 | 0.692 | 0.558 | 0.561 | |
Labor force (I3) | 0.565 | 0.692 | 1.000 | 0.583 | 0.596 | |
Containers (I4) | 0.581 | 0.558 | 0.583 | 1.000 | 0.581 | |
Number and gross tonnage of vessels (I5) | 0.576 | 0.561 | 0.596 | 0.581 | 1.000 |
References
- Wang, C.N.; Nguyen, N.A.T.; Fu, H.P.; Hsu, H.P.; Dang, T.T. Efficiency assessment of seaport terminal operators using DEA Malmquist and epsilon-based measure models. Axioms 2021, 10, 48. [Google Scholar] [CrossRef]
- Ng, A.K.Y.; Monios, J.; Jiang, C. Setting the scene on maritime transport and regional sustainability. In Maritime Transport and Regional Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 3–11. ISBN 9780128191347. [Google Scholar]
- Nguyen, P. A hybrid Grey DEMATEL and PLS-SEM model to investigate COVID-19. Comput. Mater. Contin. 2022, 72, 5059–5078. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Transport 2020; UNCTAD: Geneva, Switzerland, 2020. [Google Scholar]
- EURACTIV. EU Efforts to Promote Sea Transport Bring Little Progress. EURACTIV, 4 March 2015. [Google Scholar]
- EEA. EU Maritime Transport: First Environmental Impact Report Acknowledges Good Progress Towards Sustainability and Confirms that More Effort is Needed to Prepare for Rising Demand. EEA, 1 September 2021. [Google Scholar]
- Kaliszewski, A.; Kozłowski, A.; Dąbrowski, J.; Klimek, H. Key factors of container port competitiveness: A global shipping lines perspective. Mar. Policy 2020, 117, 103896–103906. [Google Scholar] [CrossRef]
- Lee, P.T.W.; Lin, C.W.; Shin, S.H. Financial Performance Evaluation of Shipping Companies Using Entropy and Grey Relation Analysis. In International Series in Operations Research and Management Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 260, pp. 219–247. [Google Scholar]
- Monios, J. Environmental Governance in Shipping and Ports: Sustainability and Scale Challenges. In Maritime Transport and Regional Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 13–29. ISBN 9780128191347. [Google Scholar]
- Koengkan, M.; Fuinhas, J.A.; Kazemzadeh, E.; Osmani, F.; Alavijeh, N.K.; Auza, A.; Teixeira, M. Measuring the economic efficiency performance in Latin American and Caribbean countries: An empirical evidence from stochastic production frontier and data envelopment analysis. Int. Econ. 2022, 169, 43–54. [Google Scholar] [CrossRef]
- Kuo, K.C.; Lu, W.M.; Le, M.H. Exploring the performance and competitiveness of Vietnam port industry using DEA. Asian J. Shipp. Logist. 2020, 36, 136–144. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Transport 2018; UNCTAD: Geneva, Switzerland, 2019. [Google Scholar]
- Wang, C.; Nguyen, P.; Nguyen, T.; Nguyen, T.; Nguyen, D. A Two-Stage DEA Approach to Measure Operational Efficiency in Vietnam’ s Port Industry. Mathematics 2022, 10, 1385. [Google Scholar] [CrossRef]
- Henke, I.; Esposito, M.; della Corte, V.; Del Gaudio, G.; Pagliara, F. Airport efficiency analysis in europe including user satisfaction: A non-parametric analysis with dea approach. Sustainability 2022, 14, 283. [Google Scholar] [CrossRef]
- Zhu, J. Quantitative Models for Performance Evaluation and Benchmarking Data Envelopment Analysis with Spreadsheets, 2nd ed.; Springer Nature: Cham, Switzerland, 2014. [Google Scholar]
- Wang, C.N.; Dang, T.T.; Nguyen, N.A.T. Location Optimization of Wind Plants Using DEA and Fuzzy Multi-Criteria Decision Making: A Case Study in Vietnam. IEEE Access 2021, 9, 116265–116285. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, T.L.; Dang, T.T. Analyzing operational efficiency in real estate companies: An application of GM (1,1) and dea malmquist model. Mathematics 2021, 9, 202. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T.; Bayer, J. A Two-Stage Multiple Criteria Decision Making for Site Selection of Solar Photovoltaic (PV) Power Plant: A Case Study in Taiwan. IEEE Access 2021, 9, 75509–75525. [Google Scholar] [CrossRef]
- Cullinane, K.; Wang, T.-F. Data envelopment analysis (DEA) and improving container port efficiency. Res. Transp. Econ. 2006, 17, 517–566. [Google Scholar] [CrossRef]
- Huang, T.; Chen, Z.; Wang, S.; Jiang, D. Efficiency evaluation of key ports along the 21st-Century Maritime Silk Road based on the DEA-SCOR model. Marit. Policy Manag. 2021, 48, 378–390. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Lozano, S.; Gutiérrez, E. Slacks-based measure of efficiency of airports with airplanes delays as undesirable outputs. Comput. Oper. Res. 2011, 38, 131–139. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Y.; Chiu, Y.; Li, Y.; Lin, T.-Y. Production efficiency and geographical location of Chinese coal enterprises-undesirable EBM DEA. Resour. Policy 2019, 64, 101527. [Google Scholar] [CrossRef]
- Bjurek, H. The Malmquist total factor productivity index. Scand. J. Econ. 1996, 2, 303–313. [Google Scholar] [CrossRef]
- Qiu, D.; Pan, A.; Xu, Q.; Zhuo, X. Fuzzy comprehensive evaluation of urban transportation sustainable development in Wenzhou city. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qingdao, China, 25–27 June 2010; IEEE: Qingdao, China, 2010; Volume 3, pp. V3–V599. [Google Scholar]
- Shiau, T.-A.; Huang, M.-W.; Lin, W.-Y. Developing an indicator system for measuring Taiwan’s transport sustainability. Int. J. Sustain. Transp. 2015, 9, 81–92. [Google Scholar] [CrossRef]
- Yu, M.-M.; Lin, E.T.J. Efficiency and effectiveness in railway performance using a multi-activity network DEA model. Omega 2008, 36, 1005–1017. [Google Scholar] [CrossRef]
- Shiau, T.-A.; Jhang, J.-S. An integration model of DEA and RST for measuring transport sustainability. Int. J. Sustain. Dev. World Ecol. 2010, 17, 76–83. [Google Scholar] [CrossRef]
- Lin, W.; Chen, B.; Xie, L.; Pan, H. Estimating energy consumption of transport modes in China using DEA. Sustainability 2015, 7, 4225–4239. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhu, Q.; Chu, J.; Liu, H.; Liang, L. Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transp. Res. Part D Transp. Environ. 2016, 48, 460–472. [Google Scholar] [CrossRef]
- Zhang, L.-W.; Song, M. Evaluation of Coordinated Development of Beijing-Tianjin-Hebei Transportation Based on Super-efficiency DEA Model. In Proceedings of the 2nd International Conference on Applied Mathematics, Simulation and Modelling—DEStech Transactions on Engineering and Technology Research, Shanghai, China, 26–27 November 2017. [Google Scholar]
- Zhou, H.; Hu, H. Sustainability evaluation of railways in China using a two-stage network DEA model with undesirable outputs and shared resources. Sustainability 2017, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Stefaniec, A.; Hosseini, K.; Xie, J.; Li, Y. Sustainability assessment of inland transportation in China: A triple bottom line-based network DEA approach. Transp. Res. Part D Transp. Environ. 2020, 80, 102258. [Google Scholar] [CrossRef]
- Tian, N.; Tang, S.; Che, A.; Wu, P. Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference. J. Clean. Prod. 2020, 242, 118474. [Google Scholar] [CrossRef]
- Jose-Kandappassery, M.; Djordjevic, B.; Ghosh, B. Evaluation of Sustainability of Transport Systems in Europe Using Data Envelopment Analysis (DEA). In Proceedings of the Transportation Research Board 100th Annual Meeting, Washington DC, USA, 5–29 January 2021. [Google Scholar]
- Pearson, K. Correlation coefficient. Proc. R. Soc. Proc. 1895, 58, 214. [Google Scholar]
- Chen, Y.; Ali, A.I. DEA Malmquist productivity measure: New insights with an application to computer industry. Eur. J. Oper. Res. 2004, 159, 239–249. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- EUROSTAT. European Statistics. Available online: https://ec.europa.eu/eurostat/web/main/data/database?fbclid=IwAR13lcTcQACPV9hytY3Dx7j2yIfQN-XA1qmWfe-MDUfOAkB4STRIBOVIKtw (accessed on 1 February 2022).
- World Bank. Labor Force Statistic; World Bank: Washington, DC, USA. Available online: https://data.worldbank.org/ (accessed on 2 February 2022).
- Wan, S.; Luan, W.; Ma, Y.; Haralambides, H. On determining the hinterlands of China’s foreign trade container ports. J. Transp. Geogr. 2020, 85, 102725–102738. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Talluri, G.; Scarlat, N.; Prussi, M. The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios. Renew. Sustain. Energy Rev. 2021, 139, 110715. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Transport 2017; UNCTAD: Geneva, Switzerland, 2017. [Google Scholar]
- UNCTAD. Review of Maritime Transport 2019; UNCTAD: Geneva, Switzerland, 2020. [Google Scholar]
- Medda, F.; Trujillo, L. Short-sea shipping: An analysis of its determinants. Marit. Policy Manag. 2010, 37, 285–303. [Google Scholar] [CrossRef]
- Sdoukopoulos, E.; Boile, M.; Tromaras, A.; Anastasiadis, N. Energy efficiency in European ports: State-of-practice and insights on the way forward. Sustainability 2019, 11, 4952. [Google Scholar] [CrossRef] [Green Version]
- Fratila, A.; Gavril, I.A.; Nita, S.C.; Hrebenciuc, A. The importance of maritime transport for economic growth in the european union: A panel data analysis. Sustainability 2021, 13, 7961. [Google Scholar] [CrossRef]
- Raconteur Media How Technology is Creating the Digital Ports of the Future. Raconteur Media, 18 October 2018.
- Lam, Y. Technology Will Help Maritime Transport Navigate through the Pandemic—And Beyond; World Bank: Washington, DC, USA, 17 November 2020. [Google Scholar]
- Nguyen, P.H.; Tsai, J.F.; Kayral, I.E.; Lin, M.H. Unemployment rates forecasting with grey-based models in the post-COVID-19 period: A case study from vietnam. Sustainability 2021, 13, 7879. [Google Scholar] [CrossRef]
- Bai, X.J.; Zeng, J.; Chiu, Y.H. Pre-evaluating efficiency gains from potential mergers and acquisitions based on the resampling DEA approach: Evidence from China’s railway sector. Transp. Policy 2019, 76, 46–56. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Tsai, J.F.; Lin, M.H.; Hu, Y.C. A hybrid model with spherical fuzzy-ahp, pls-sem and ann to predict vaccination intention against COVID-19. Mathematics 2021, 9, 3075. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Tsai, J.F.; Dang, T.T.; Lin, M.H.; Pham, H.A.; Nguyen, K.A. A hybrid spherical fuzzy MCDM approach to prioritize governmental intervention strategies against the COVID-19 pandemic: A case study from Vietnam. Mathematics 2021, 9, 2626. [Google Scholar] [CrossRef]
- Nguyen, P.-H.; Dang, T.-T.; Nguyen, K.-A.; Pham, H.-A. Spherical Fuzzy WASPAS-based Entropy Objective Weighting for International Payment Method Selection. Comput. Mater. Contin. 2022, 72, 2055–2075. [Google Scholar] [CrossRef]
Authors/Year | Inputs | Outputs | Methodology | Applied Areas |
---|---|---|---|---|
Yu and Lin (2008) | Number of employees Length of lines Number of passenger cars Number of freight cars | Passenger train-km Freight train-km Purchasing power parity Population density | Multi-activity network DEA | Railway firms in the world |
Shiau and Jhang (2010) | Land take by road infrastructure Fossil fuel consumption by transport system | Vehicle-Kilometer (VKM) traveled by private mode VKM traveled by transit VKM traveled by truck | CCR-DEA RST | Transport systems in EU |
Lin et al. (2015) | Energy | Passenger-kilometers Freight ton-kilometers | CCR-DEA | Transport Modes in China |
Wu et al. (2016) | Cargo tonnage Energy Capital Highway mileage | Freight turnover volume CO2 | CCR-DEA | Transportation systems in China |
Zhang and Song (2017) | Traffic infrastructure investment Number of employees | Freight traffic Passenger traffic | SE-DEA | Beijing-Tianjin-Hebei region in China |
Zhou and Hu (2017) | Capital Land Labor | Railway mileage Railway density Passenger turnover Freight turnover Average salary growth | Undesirable outputs-DEA Shared inputs-DEA | Railway transport of China’s eastern |
Stefaniec et al. (2020) | Vehicles Capital Employment Energy consumption | Accessibility Traffic casualties Value-added Turnover Green energy usage CO2 emissions | Undesirable-DEA | Inland transport of China |
Tian et al. (2020) | Length of transport routes Transport density Capital investment Staff input Expenditure in transportation Input of vehicles Land take by transportation Fossil fuel consumption | Quality of transport routes On-time rate of vehicles Accessibility to rural area Speed of vehicles Education level Traffic accident Output value Income level Passenger capacity Freight capacity Passenger-Kilometers (PKM) Ton-kilometers (TKM) Carbon emissions Air pollution emissions Traffic noise pollution | Super SBM-DEA | Transport in Shaanxi province, China |
Jose-Kandappassery et al. (2021) | Infrastructure spending | Carbon Dioxide emissions Energy consumption Gross Value Added | Super SBM-DEA | Transport Systems in Europe |
Variables | Definitions | Units |
---|---|---|
Short sea shipping | The maritime transport of goods over relatively short distances, as opposed to the intercontinental cross-ocean deep-sea shipping | Thousand tons |
Energy consumption in transport | The total energy utilized by all forms of transport: road (buses, trucks, etc.), railway (trains, metro, etc.), marine, airway, and pipeline transport. | Thousand tons of oil equivalent |
Labor force | All people in a country or region who are legally permitted to work. | Thousands of persons |
Containers | The type of cargo classification deals with containers that are moved between the vessel and the port by being lifted on or lifted off. This involves the use of specialized equipment to attach to the fittings on the container to allow such movements | TEU |
Number and gross tonnage of vessels | The number of vessels and overall size of a ship are determined as a function of the molded volume of all enclosed areas on board. | Number |
Passenger | There are numbers of passengers moving between a port of embarkation and a port of disembarkation. These are the quantities that define the amount of maritime passenger transport carried out | Thousand passengers |
Gross weight of goods transported | The tonnage of goods carried, including packaging, excludes containers’ tare weight or Ro-Ro units. | Thousand tons |
Year | Statistics | I1 | I2 | I3 | I4 | I5 | O1 | O2 |
---|---|---|---|---|---|---|---|---|
2016 | Max | 286,148 | 56,557 | 43,058,646 | 15,408 | 456,759 | 67,273 | 588,230 |
Min | 3483 | 200 | 215,527 | 115 | 2138 | 3 | 3781 | |
Average | 111,133 | 11,980 | 9,604,118 | 4003 | 88,294 | 15,745 | 155,451 | |
SD | 101,132 | 15,578 | 12,077,618 | 5106 | 126,772 | 20,156 | 160,120 | |
2017 | Max | 316,196 | 57,247 | 43,288,289 | 16,013 | 470,424 | 595,807 | 470,424 |
Min | 3707 | 207 | 223,541 | 124 | 2021 | 4100 | 2021 | |
Average | 113,040 | 12,227 | 9,694,461 | 4186 | 89,325 | 160,970 | 89,325 | |
SD | 103,912 | 15,773 | 12,200,068 | 5269 | 129,214 | 166,301 | 129,214 | |
2018 | Max | 313,739 | 55,470 | 43,562,285 | 17,210 | 478,567 | 85,382 | 604,000 |
Min | 4351 | 231 | 236,718 | 134 | 1878 | 0 | 4559 | |
Average | 115,485 | 12,272 | 9,761,664 | 4518 | 96,135 | 17,440 | 164,650 | |
SD | 105,458 | 15,604 | 12,310,614 | 5650 | 139,843 | 23,406 | 168,672 | |
2019 | Max | 320,701 | 56,220 | 43,871,267 | 17,408 | 472,540 | 86,530 | 607,500 |
Min | 4324 | 246 | 249,860 | 133 | 1649 | 0 | 5195 | |
Average | 117,264 | 12,359 | 9,803,084 | 4542 | 97,529 | 17,771 | 165,886 | |
SD | 107,922 | 15,729 | 12,368,825 | 5648 | 143,296 | 23,816 | 170,661 |
2016–2017 | 2017–2018 | 2018–2019 | |||||||
---|---|---|---|---|---|---|---|---|---|
DMU | MPI | Catch-Up | Frontier Shift | MPI | Catch-Up | Frontier Shift | MPI | Catch-Up | Frontier Shift |
Belgium | 1.537 | 1.181 | 1.301 | 0.730 | 0.924 | 0.789 | 0.999 | 0.997 | 1.002 |
Bulgaria | 1.389 | 1.013 | 1.371 | 0.580 | 0.615 | 0.942 | 1.258 | 1.600 | 0.786 |
Denmark | 2.716 | 1.485 | 1.829 | 0.360 | 0.667 | 0.539 | 0.996 | 0.971 | 1.025 |
Germany | 1.318 | 1.161 | 1.136 | 0.789 | 0.877 | 0.899 | 1.021 | 1.020 | 1.000 |
Estonia | 1.423 | 0.895 | 1.589 | 0.875 | 1.090 | 0.803 | 1.031 | 1.032 | 0.999 |
Ireland | 1.380 | 1.137 | 1.214 | 0.756 | 0.879 | 0.860 | 0.971 | 0.981 | 0.990 |
Greece | 3.104 | 1.814 | 1.711 | 0.334 | 0.580 | 0.576 | 1.008 | 0.987 | 1.022 |
Spain | 1.260 | 1.024 | 1.230 | 0.806 | 0.977 | 0.825 | 0.520 | 0.525 | 0.991 |
France | 1.007 | 0.623 | 1.618 | 0.818 | 1.042 | 0.785 | 0.980 | 0.972 | 1.009 |
Croatia | 2.962 | 1.885 | 1.571 | 0.342 | 0.543 | 0.631 | 0.952 | 0.935 | 1.018 |
Italy | 2.419 | 1.350 | 1.791 | 0.437 | 0.770 | 0.567 | 1.023 | 1.018 | 1.005 |
Cyprus | 1.181 | 1.230 | 0.960 | 0.686 | 0.601 | 1.142 | 1.064 | 1.063 | 1.001 |
Latvia | 1.301 | 0.919 | 1.415 | 0.762 | 1.052 | 0.724 | 0.966 | 0.964 | 1.002 |
Lithuania | 1.431 | 1.033 | 1.384 | 0.628 | 0.739 | 0.850 | 0.997 | 1.012 | 0.986 |
Malta | 0.890 | 0.402 | 2.213 | 1.109 | 2.475 | 0.448 | 0.977 | 0.942 | 1.037 |
The Netherlands | 1.434 | 1.019 | 1.408 | 0.721 | 0.978 | 0.736 | 1.012 | 1.020 | 0.993 |
Poland | 1.493 | 1.306 | 1.143 | 0.746 | 0.843 | 0.885 | 1.008 | 1.004 | 1.003 |
Portugal | 1.552 | 1.276 | 1.217 | 0.658 | 0.793 | 0.829 | 0.979 | 0.977 | 1.002 |
Romania | 1.452 | 1.053 | 1.379 | 0.986 | 1.674 | 0.589 | 1.133 | 1.022 | 1.108 |
Slovenia | 1.595 | 1.213 | 1.316 | 1.008 | 1.666 | 0.605 | 0.850 | 0.996 | 0.853 |
Finland | 0.983 | 0.611 | 1.610 | 1.069 | 1.624 | 0.658 | 0.996 | 0.994 | 1.002 |
Sweden | 1.254 | 1.067 | 1.176 | 0.824 | 0.956 | 0.862 | 0.951 | 0.953 | 0.998 |
Norway | 1.427 | 1.058 | 1.349 | 0.737 | 0.952 | 0.774 | 1.015 | 1.019 | 0.996 |
Turkey | 1.571 | 1.257 | 1.250 | 0.705 | 0.815 | 0.865 | 1.025 | 1.020 | 1.004 |
Period | Weight to Input/Output | Epsilon | ||||
---|---|---|---|---|---|---|
Short Sea Shipping | Energy Consumption in Transport | Labor Force | Containers | Number and Gross Tonnage of Vessels | ||
2016 | 0.197 | 0.199 | 0.204 | 0.206 | 0.192 | 0.414 |
2017 | 0.195 | 0.199 | 0.207 | 0.198 | 0.200 | 0.418 |
2018 | 0.194 | 0.199 | 0.207 | 0.201 | 0.199 | 0.414 |
2019 | 0.195 | 0.202 | 0.207 | 0.198 | 0.199 | 0.416 |
DMUs | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|
Belgium | 0.773 | 0.903 | 0.859 | 0.853 |
Bulgaria | 0.865 | 0.908 | 0.827 | 0.854 |
Denmark | 0.750 | 0.965 | 0.763 | 0.758 |
Germany | 0.665 | 0.788 | 0.672 | 0.692 |
Estonia | 1 | 1 | 1 | 1 |
Ireland | 0.671 | 0.834 | 0.678 | 0.656 |
Greece | 0.675 | 0.967 | 0.690 | 0.686 |
Spain | 0.837 | 0.970 | 0.875 | 0.795 |
France | 0.901 | 0.845 | 0.857 | 0.840 |
Croatia | 1 | 1 | 1 | 0.971 |
Italy | 0.574 | 0.820 | 0.592 | 0.629 |
Cyprus | 0.518 | 0.787 | 0.440 | 0.446 |
Latvia | 1 | 1 | 1 | 1 |
Lithuania | 0.952 | 1 | 0.888 | 0.895 |
Malta | 1 | 1 | 1 | 1 |
The Netherlands | 1 | 1 | 1 | 1 |
Poland | 0.536 | 0.792 | 0.595 | 0.588 |
Portugal | 0.688 | 0.832 | 0.687 | 0.678 |
Romania | 0.770 | 0.834 | 0.886 | 0.940 |
Slovenia | 0.723 | 0.835 | 0.860 | 0.845 |
Finland | 1 | 0.861 | 1 | 1 |
Sweden | 0.845 | 0.904 | 0.824 | 0.788 |
Norway | 1 | 1 | 1 | 1 |
Turkey | 0.683 | 0.840 | 0.675 | 0.672 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.-H.; Nguyen, T.-L.; Nguyen, T.-G.; Nguyen, D.-T.; Tran, T.-H.; Le, H.-C.; Phung, H.-T. A Cross-Country European Efficiency Measurement of Maritime Transport: A Data Envelopment Analysis Approach. Axioms 2022, 11, 206. https://doi.org/10.3390/axioms11050206
Nguyen P-H, Nguyen T-L, Nguyen T-G, Nguyen D-T, Tran T-H, Le H-C, Phung H-T. A Cross-Country European Efficiency Measurement of Maritime Transport: A Data Envelopment Analysis Approach. Axioms. 2022; 11(5):206. https://doi.org/10.3390/axioms11050206
Chicago/Turabian StyleNguyen, Phi-Hung, Thi-Ly Nguyen, Thi-Giang Nguyen, Duc-Thinh Nguyen, Thi-Hoai Tran, Hong-Cham Le, and Huong-Thuy Phung. 2022. "A Cross-Country European Efficiency Measurement of Maritime Transport: A Data Envelopment Analysis Approach" Axioms 11, no. 5: 206. https://doi.org/10.3390/axioms11050206
APA StyleNguyen, P. -H., Nguyen, T. -L., Nguyen, T. -G., Nguyen, D. -T., Tran, T. -H., Le, H. -C., & Phung, H. -T. (2022). A Cross-Country European Efficiency Measurement of Maritime Transport: A Data Envelopment Analysis Approach. Axioms, 11(5), 206. https://doi.org/10.3390/axioms11050206