Controllability of a Class of Impulsive ψ-Caputo Fractional Evolution Equations of Sobolev Type
Abstract
:1. Introduction
2. Preliminaries
- (H1)
- A and E are linear operators, and A is closed.
- (H2)
- and E is bijective.
- (H3)
- Linear operator is compact (which implies that is bounded).
- (i)
- (ii)
- (iii)
- (i)
- For any fixed , and are bounded linear operators withfor each .
- (ii)
- and are strongly continuous for all , that is, for each and we haveas .
- (iii)
- If is compact operator for every , then and are compact for all .
- (iv)
- If and are compact strongly continuous semigroup of bounded linear operator for , then and are continuous in the uniform operator topology.
3. Main Results
- (i)
- For each and , the function is strongly measurable and for each , the function is continuous;
- (ii)
- For any and , there are two continuous nondecreasing functions and constant L such that, for any , such that
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Feckan, M.; Wang, J.; Pospsil, M. Fractional-Order Equations and Inclusions; de Gruyter: Berlin, Germany; Boston, MA, USA, 2017. [Google Scholar]
- Bouchaud, J.P.; Georges, A. Comment on Stochastic pathway to anomalous diffusion. Phys. Rev. A 1990, 41, 1156–1157. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion:a fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R. Weak ergodicity breaking, irreproducibility, and ageing in anomalous diffusion processes. AIP Conf. Proc. 2014, 1579, 89–101. [Google Scholar]
- Tomovski, Z.; Sandev, T.; Metzler, R.; Dubbeldam, J. Generalized space-time fractional diffusion equation with composite fractional time derivative. Phys. A Stat. Mech. Appl. 2012, 391, 2527–2542. [Google Scholar] [CrossRef]
- El-Borai, M.M. Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 2002, 14, 433–440. [Google Scholar] [CrossRef]
- El-Borai, M.M. The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 2004, 3, 197–211. [Google Scholar] [CrossRef]
- Balachandran, K.; Park, J.Y. Controllability of fractional integrodifferential systems in Banach spaces. Nonlinear Anal. Hybrid Syst. 2009, 3, 363–367. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Z.; Zhou, Y. Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 2012, 154, 292–302. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y. Complete controllability of fractional evolution systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4346–4355. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Wei, W. Fractional Schrodinger equations with potential and optimal controls. Nonlinear Anal. Real World Appl. 2012, 3, 2755–2766. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiao, F. Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 2010, 11, 4465–4475. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ren, Y.; Mahmudov, N.I. On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 2011, 62, 1451–1459. [Google Scholar] [CrossRef]
- Debbouchea, A.; Baleanu, D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 2011, 62, 1442–1450. [Google Scholar] [CrossRef]
- Li, K.; Peng, J.; Jia, J. Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 2012, 263, 476–510. [Google Scholar] [CrossRef]
- Kumar, S.; Sukavanam, N. Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equs. 2012, 252, 6163–6174. [Google Scholar] [CrossRef]
- Lord, G.J.; Catherine, E.P.; Tony, S. An Introduction to Computational Stochastic PDEs; Cambridge University Press: Cambridge, UK, 2014; Volume 50. [Google Scholar]
- Michal Feckan, M.; Wang, J.; Zhou, Y. Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory Appl. 2013, 156, 79–95. [Google Scholar] [CrossRef]
- Liu, Y. Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations. J. Nonlinear Sci. Appl. 2015, 8, 340–353. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y. Eigenvalues of a class of singular boundary value problems of impulsive differential equations in Banach spaces. J. Funct. Space 2014, 2014, 720494. [Google Scholar] [CrossRef]
- Ji, S.; Li, G.; Wang, M. Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 2011, 217, 6981–6989. [Google Scholar] [CrossRef]
- Afrouzi, G.A.; Moradi, S.; Caristi, G. Infinitely many Solutions for impulsive nonlocal elastic beam equations. Differ. Equ. Dyn. Syst. 2022, 30, 287–300. [Google Scholar] [CrossRef]
- Shu, X.B.; Shi, Y. A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 2016, 273, 465–476. [Google Scholar] [CrossRef]
- Zhao, D. A Study on controllability of a class of impulsive fractional nonlinear evolution equations with delay in Banach spaces. Fractal Fract. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Michal Feckan, M.; Zhou, Y.; Wang, J. On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3050–3060. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; J. Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Kiryakova, V. A brief story about the operators of generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Sousa, J.V.d.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 2018, 41, 336–352. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Awadalla, M.; Abuasbeh, K.; Subramanian, M.; Murugesan Manigandan, M. On a system of ψ-Caputo hybrid fractional differential equations with dirichlet boundary conditions. Mathematics 2022, 10, 1681. [Google Scholar] [CrossRef]
- Youssri, Y.H. Orthonormal ultraspherical operational matrix algorithm for fractal-fractional Riccati equation with generalized Caputo derivative. Fractal Fract. 2021, 5, 100. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Benchohra, M.; Nieto, J.J. Monotone iterative technique for a new class of nonlinear sequential fractional differential equations with nonlinear boundary conditions under the ψ-Caputo operator. Mathematics 2022, 10, 1173. [Google Scholar] [CrossRef]
- Suechori, A.; Ngiamsunthorn, P.S. Existence uniqueness and stability of mild solutions for semilinear ψ-Caputo fractional evolution equations. Adv. Differ. Equ. 2020, 2020, 114. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. Ser. S. 2019, 13, 709–722. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Li, X. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Commun. Pur. Appl. Anal. 2019, 18, 455–478. [Google Scholar] [CrossRef]
- Lightbourne, J.H.; Rankin, S.M. A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 1983, 93, 328–337. [Google Scholar] [CrossRef]
- Berberan-Santos, M.N. Relation between the inverse Laplace transforms of I(tβ) and I(t): Application to the Mittag-Leffler and asymptotic inverse power law relaxation functions. J. Math. Chem. 2005, 38, 265–270. [Google Scholar] [CrossRef]
- Berberan-Santos, M.N. Properties of the Mittag-Leffler relaxation function. J. Math. Chem. 2005, 38, 629–635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Bai, C.; Yang, D. Controllability of a Class of Impulsive ψ-Caputo Fractional Evolution Equations of Sobolev Type. Axioms 2022, 11, 283. https://doi.org/10.3390/axioms11060283
Yang Q, Bai C, Yang D. Controllability of a Class of Impulsive ψ-Caputo Fractional Evolution Equations of Sobolev Type. Axioms. 2022; 11(6):283. https://doi.org/10.3390/axioms11060283
Chicago/Turabian StyleYang, Qing, Chuanzhi Bai, and Dandan Yang. 2022. "Controllability of a Class of Impulsive ψ-Caputo Fractional Evolution Equations of Sobolev Type" Axioms 11, no. 6: 283. https://doi.org/10.3390/axioms11060283
APA StyleYang, Q., Bai, C., & Yang, D. (2022). Controllability of a Class of Impulsive ψ-Caputo Fractional Evolution Equations of Sobolev Type. Axioms, 11(6), 283. https://doi.org/10.3390/axioms11060283